2160 STONEHURST DRIVE TRUCK YARD AIR QUALITY AND GLOBAL CLIMATE CHANGE IMPACT ANALYSIS City of Rialto June 13, 2024 ## 2160 STONEHURST DRIVE TRUCK YARD AIR QUALITY AND GLOBAL CLIMATE CHANGE IMPACT ANALYSIS City of Rialto June 13, 2024 prepared by Katie Wilson, MS Catherine Howe, MS #### **GANDDINI GROUP INC.** 555 Park Center Drive, Suite 225 Santa Ana, California 92705 (714) 795-3100 | ganddini.com ## **TABLE OF CONTENTS** | EXE | ECUTIVE SUMMARY | IV | |-----|---|----| | 1. | INTRODUCTION | 1 | | | Purpose and Objectives | 1 | | | Project Location | | | | Project Description | 1 | | | Phasing and Timing | 1 | | | Sensitive Receptors in Project Vicinity | 1 | | 2. | AIR QUALITY ANALYSIS | 5 | | | Existing Air Quality Conditions | 5 | | | Local Air Quality | 5 | | | Pollutants | | | | Other Pollutants of Concern | | | | Regulatory Setting | | | | Federal – United States Environmental Protection Agency | | | | State - California Air Resources Board | | | | Regional | | | | Local – City of Rialto | | | | Monitored Air Quality | | | | Ozone | | | | Carbon Monoxide | | | | Nitrogen Dioxide | | | | Particulate Matter | | | | Air Quality Standards | | | | Significance Thresholds | | | | Regional Air Quality | 24 | | | Local Air Quality | | | | Toxic Air Contaminants | 24 | | | Odor Impacts | 25 | | | Short-Term Construction Emissions | | | | Methodology | 27 | | | Construction-Related Regional Impacts | | | | Construction-Related Local Impacts | | | | Construction-Related Health Impacts | 29 | | | Construction-Related Toxic Air Contaminant Impacts | 29 | | | Construction-Related Odor Impacts | 30 | | | Long-Term Operational Emissions | 34 | | | Operations-Related Regional Air Quality Impacts | | | | Operations-Related Local Air Quality Impacts | 35 | | | Operations-Related Health Impacts | 36 | | | Operations-Related Odor Impacts | 37 | | | Cumulative Air Quality Impacts | 41 | | | Project Specific Impacts | 41 | | | Air Quality Compliance | 41 | | 3. | GLOBAL CLIMATE CHANGE ANALYSIS | 43 | | | Existing Greenhouse Gas Environment | 43 | | | Water Vapor | 43 | | | Carbon Dioxide (CO ₂) | | | | Methane (CH ₄) | 44 | | REFERENCES | 74 | |--|----| | Operational Measures | | | Construction Measures | | | EMISSIONS REDUCTION MEASURES | 73 | | Cumulative Greenhouse Gas Impacts | 72 | | Consistency With Applicable Greenhouse Gas Reduction Plans and Policies | | | Project Greenhouse Gas Emissions | 65 | | Methodology | | | Thresholds of Significance for this Project | | | Appendix G of State CEQA Guidelines | | | Significance Thresholds | | | Regional – South Coast Air Quality Management District
Local – City of Rialto | | | State of California | | | Federal | | | International | | | Greenhouse Gas Standards and Regulation | | | Global Warming Potential | | | Aerosols | | | Sulfur Hexafluoride (SF ₆) | | | Perfluorocarbons (PFC) | | | Hydrofluorocarbons (HFC) | | | Chlorofluorocarbons (CFC) | | | Nitrous Oxide (N ₂ O) | 4 | ### **APPENDICES** Appendix A Glossary Appendix B CalEEMod Model Detailed Report ### **LIST OF TABLES** | Table 1. | Local Monthly Climate Data | 7 | |-----------|---|----| | Table 2. | State and Federal Criteria Pollutant Standards | 18 | | Table 3. | South Coast Air Basin Attainment Status | 19 | | Table 4. | Air Quality Monitoring Summary | 22 | | Table 5. | SCAQMD Air Quality Significance Thresholds | 26 | | Table 6. | Construction-Related Regional Pollutant Emissions | 31 | | Table 7. | Maximum Number of Acres Disturbed Per Day | 32 | | Table 8. | Local Construction Emissions at the Nearest Receptors | 33 | | Table 9. | CalEEMod Revised Vehicle Mix Parameters | 38 | | Table 10. | Regional Operational Pollutant Emissions | 39 | | Table 11. | Local Operational Emissions at the Nearest Receptors | 40 | | Table 12. | Global Warming Potentials and Atmospheric Lifetimes | 46 | | | | | | Table 13. | Project-Related Greenhouse Gas Emissions | 57 | |------------|--|----------------| | Table 14. | Project Consistency with CARB Scoping Plan Policies and Measures | ⁷ O | | LIST OF FI | IGURES | | | Figure 1. | Project Location Map | .3 | | Figure 2. | Site Plan | .4 | ### **EXECUTIVE SUMMARY** The purpose of this air quality and global climate change impact analysis is to provide an assessment of the impacts resulting from development of the proposed 2160 Stonehurst Drive Truck Yard project and to identify measures that may be necessary to reduce potentially significant impacts. #### Construction-Source Emissions Project construction-source emissions would not exceed applicable regional thresholds of significance established by the South Coast Air Quality Management District (SCAQMD). For localized emissions, the project will not exceed applicable Localized Significance Thresholds (LSTs) established by the SCAQMD. Project construction-source emissions would not conflict with the Basin Air Quality Management Plan (AQMP). As discussed herein, the project will comply with all applicable SCAQMD construction-source emission reduction rules and guidelines. Project construction source emissions would not cause or substantively contribute to violation of the California Ambient Air Quality Standards (CAAQS) or National Ambient Air Quality Standards (NAAQS). Given the temporary and short-term construction schedule, the project would not result in a long-term (i.e., lifetime or 30-year) exposure to Toxic Air Contaminants (TACs) as a result of project construction. Furthermore, construction-based particulate matter (PM) emissions (including diesel exhaust emissions) do not exceed any local or regional thresholds. Therefore, impacts from TACs during construction would be less than significant. Established requirements addressing construction equipment operations, and construction material use, storage, and disposal requirements act to minimize odor impacts that may result from construction activities. Moreover, construction-source odor emissions would be temporary, short-term, and intermittent in nature and would not result in persistent impacts that would affect substantial numbers of people. Potential construction-source odor impacts are therefore considered less than significant. #### Operational-Source Emissions Project operational-sourced emissions would not exceed applicable regional thresholds of significance established by the SCAQMD. Project operational-source emissions would not result in or cause a significant localized air quality or TAC impacts as discussed in the Operations-Related Local Air Quality Impacts section of this report. Additionally, project-related trips will not cause or result in CO concentrations exceeding applicable state and/or federal standards (CO "hotspots). Project operational-source emissions would therefore not adversely affect sensitive receptors within the vicinity of the project. Project operational-source emissions would not conflict with the Basin Air Quality Management Plan (AQMP). The project's emissions meet SCAQMD regional thresholds and will not result in a significant cumulative impact. The project does not propose any such uses or activities that would result in potentially significant operational-source odor impacts. Potential operational-source odor impacts are therefore considered less than significant. #### Greenhouse Gases Project-related GHG emissions would not exceed the SCAQMD screening threshold of 10,000 MTCO₂e per year for industrial uses. Furthermore, the project's GHG emissions would not exceed the SCAQMD screening threshold (based on EO S-3-05). The project would not conflict with the goals of AB-32, SB-32, or the CARB Scoping Plan; therefore, | the project would not conflict with an applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases and impacts are considered to be less than significant. | |---| ### INTRODUCTION This section describes the purpose of this air quality and global climate change impact analysis, project location, proposed development, and study area. Figure 1 shows the project location map and Figure 2 illustrates the project site plan. #### **PURPOSE AND OBJECTIVES** This study was performed to address the possibility of regional/local air quality impacts and global climate change impacts, from project related air emissions. The objectives of the study include: - documentation of the atmospheric setting - discussion of criteria pollutants and greenhouse gases - discussion of the air quality and global climate change regulatory framework - analysis of the construction related air quality and greenhouse gas emissions - analysis of the operations related air quality and greenhouse gas emissions - analysis of the conformity of the proposed project with the SCAQMD AQMP - recommendations for mitigation measures The City of Rialto is the lead agency for this air quality and greenhouse gas analysis, in accordance with the California Environmental Quality Act authorizing legislation. Although this is a technical report, every effort has been made to write the report clearly and concisely. To assist the reader with terms unique to air quality and global climate change, a definition of terms has been provided in Appendix A. #### **PROJECT LOCATION** The approximately 85,440 square foot (~1.96-acre) project site is located at 2160 Stonehurst Drive in the City of Rialto, California. The project site is currently developed with a chassis/trailer storage yard and located in the
Rialto Airport Specific Plan. A vicinity map showing the project location is provided on Figure 1. #### **PROJECT DESCRIPTION** The proposed project includes the construction and operation of a truck storage use with 28 passenger vehicle spaces and 57 truck docking spaces. Site access is planned via two driveways on W Stonehurst Drive. Figure 2 illustrates the proposed site plan. #### **PHASING AND TIMING** The proposed project is anticipated to be constructed and fully operational by the year 2025. The project is anticipated to be built in one phase with project construction anticipated to start no sooner than February 2025 and being complete June 2025. The construction schedule utilized in the analysis represents a "worstcase" analysis scenario even if construction was to occur any time after the respective dates since emission factors for construction decrease as time passes and the analysis year increases due to emission regulations becoming more stringent.1 #### **SENSITIVE RECEPTORS IN PROJECT VICINITY** Those who are sensitive to air pollution include children, the elderly, and persons with preexisting respiratory or cardiovascular illness. For purposes of CEQA, the SCAQMD considers a sensitive receptor to be a location 1 2160 Stonehurst Drive Truck Yard Air Quality and Global Climate Change Impact Analysis ¹ As shown in the California Emissions Estimator Model (CalEEMod) User's Guide Version 2020.4.0, Section 4.3.2 "OFFROAD Equipment" as the analysis year increases, emission factors for the same equipment pieces decrease due to the natural turnover of older equipment being replaced by newer less polluting equipment and new regulatory requirements. where a sensitive individual could remain for 24 hours, such as residences, hospitals, or convalescent facilities (South Coast Air Quality Management District 2008). Commercial and industrial facilities are not included in the definition because employees do not typically remain on-site for 24 hours. The nearest sensitive receptors to the project site include the existing single-family residential uses located approximately 1,542 feet (~470 meters) to the southeast (at the southeast corner of the intersection of Locust Avenue and Bohnert Avenue) of the project site. Other air quality sensitive land uses are located further from the project site and would experience lower impacts. Figure 1 Project Location Map ## Figure 2 Site Plan ## 2. AIR QUALITY ANALYSIS This section documents the existing conditions, regulatory setting, monitored pollutants/standards, and an assessment of the project's air quality impacts. #### **EXISTING AIR QUALITY CONDITIONS** #### **Local Air Quality** The project site is located within the City of Rialto in San Bernardino County, which is part of the South Coast Air Basin (SCAB) that includes all of Orange County as well as the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties. The South Coast Air Basin is located on a coastal plain with connecting broad valleys and low hills to the east. Regionally, the South Coast Air Basin is bounded by the Pacific Ocean to the southwest and high mountains to the east forming the inland perimeter. The project site is located toward the northeast portion of the South Coast Air Basin near the foot of the San Bernardino Mountains, which define the eastern boundary of the South Coast Air Basin. The climate of western San Bernardino County, technically called an interior valley subclimate of the Southern California's Mediterranean-type climate, is characterized by hot dry summers, mild moist winters with infrequent rainfall, moderate afternoon breezes, and generally fair weather. Occasional periods of strong Santa Ana winds and winter storms interrupt the otherwise mild weather pattern. The clouds and fog that form along the area's coastline rarely extend as far inland as western San Bernardino County. When morning clouds and fog form, they typically burn off quickly after sunrise. The most important weather pattern from an air quality perspective is associated with the warm season airflow across the populated areas of the Los Angeles Basin. This airflow brings polluted air into western San Bernardino County late in the afternoon. This transport pattern creates unhealthful air quality that may extend to the project site particularly during the summer months. Winds are an important parameter in characterizing the air quality environment of a project site because they both determine the regional pattern of air pollution transport and control the rate of dispersion near a source. Daytime winds in western San Bernardino County are usually light breezes from off the coast as air moves regionally onshore from the cool Pacific Ocean to the warm Mojave Desert interior of Southern California. These winds allow for good local mixing, but as discussed above, these coastal winds carry significant amounts of industrial and automobile air pollutants from the densely urbanized western portion of the South Coast Air Basin into the interior valleys which become trapped by the mountains that border the eastern edge of the South Coast Air Basin. In the summer, strong temperature inversions may occur that limit the vertical depth through which air pollution can be dispersed. Air pollutants concentrate because they cannot rise through the inversion layer and disperse. These inversions are more common and persistent during the summer months. Over time, sunlight produces photochemical reactions within this inversion layer that creates ozone, a particularly harmful air pollutant. Occasionally, strong thermal convections occur which allows the air pollutants to rise high enough to pass over the mountains and ultimately dilute the smog cloud. In the winter, light nocturnal winds result mainly from the drainage of cool air off of the mountains toward the valley floor while the air aloft over the valley remains warm. This forms a type of inversion known as a radiation inversion. Such winds are characterized by stagnation and poor local mixing and trap pollutants such as automobile exhaust near their source. While these inversions may lead to air pollution "hot spots" in heavily developed coastal areas of the basin, there is not enough traffic in inland valleys to cause any winter air pollution problems. Despite light wind conditions, especially at night and in the early morning, winter is generally a period of good air quality in the project vicinity. The temperature and precipitation levels for the City of Fontana, the closest station with updated data, are shown below in Table 1. Table 1 shows that August is typically the warmest month and January is typically the coolest month. Rainfall in the project area varies considerably in both time and space. Almost all the annual rainfall comes from the fringes of mid-latitude storms from late November to early April, with summers being almost completely dry. # Table 1 Local Monthly Climate Data | Descriptor | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------| | Avg. Max. Temperature | 66.4 | 68.9 | 68.5 | 72.8 | 80.3 | 86.5 | 95.0 | 96.2 | 90.0 | 80.4 | 68.7 | 66.0 | | Avg. Min. Temperature | 41.5 | 42.6 | 43.9 | 45.9 | 51.5 | 56.1 | 59.5 | 62.4 | 60.2 | 52.5 | 43.5 | 41.7 | | Avg. Total Precipitation (in.) | 3.17 | 3.27 | 4.13 | 1.31 | 0.31 | 0.00 | 0.00 | 0.28 | 0.62 | 0.77 | 2.59 | 2.33 | Source: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca3120 Data from the Fontana Kaiser, CA station (043120). #### **Pollutants** Pollutants are generally classified as either criteria pollutants or non-criteria pollutants. Federal ambient air quality standards have been established for criteria pollutants, whereas no ambient standards have been established for non-criteria pollutants. For some criteria pollutants, separate standards have been set for different periods. Most standards have been set to protect public health. For some pollutants, standards have been based on other values (such as protection of crops, protection of materials, or avoidance of nuisance conditions). A summary of federal and state ambient air quality standards is provided in the Regulatory Framework section. #### Criteria Pollutants The criteria pollutants consist of: ozone, nitrogen dioxide, carbon monoxide, sulfur dioxide, lead, and particulate matter. These pollutants can harm your health and the environment, and cause property damage. The Environmental Protection Agency (EPA) calls these pollutants "criteria" air pollutants because it regulates them by developing human health-based and/or environmentally-based criteria for setting permissible levels. The following provides descriptions of each of the criteria pollutants. #### Nitrogen Dioxides Nitrogen Oxides (NOx) is the generic term for a group of highly reactive gases which contain nitrogen and oxygen. While most NOx are colorless and odorless, concentrations of nitrogen dioxide (NO_2) can often be seen as a reddish-brown layer over many urban areas. NOx form when fuel is burned at high temperatures, as in a combustion process. The primary manmade sources of NOx are motor vehicles, electric utilities, and other industrial, commercial, and residential sources that burn fuel. NOx reacts with other pollutants to form, ground-level ozone, nitrate particles, acid aerosols, as well as NO_2 , which cause respiratory problems. NOx and the pollutants formed from NOx can be transported over long distances, following the patterns of prevailing winds. Therefore, controlling NOx is often most effective if done from a regional perspective, rather than focusing on the nearest sources. #### Ozone Ozone (O₃) is not usually emitted directly into the air but at ground-level is created by a chemical reaction between NOx and volatile organic compounds (VOC) in the presence of sunlight. Motor vehicle exhaust, industrial
emissions, gasoline vapors, chemical solvents as well as natural sources emit NOx and VOC that help form ozone. Ground-level ozone is the primary constituent of smog. Sunlight and hot weather cause ground-level ozone to form with the greatest concentrations usually occurring downwind from urban areas. Ozone is subsequently considered a regional pollutant. Ground-level ozone is a respiratory irritant and an oxidant that increases susceptibility to respiratory infections and can cause substantial damage to vegetation and other materials. Because NOx and VOC are ozone precursors, the health effects associated with ozone are also indirect health effects associated with significant levels of NOx and VOC emissions. #### Carbon Monoxide Carbon monoxide (CO) is a colorless, odorless gas that is formed when carbon in fuel is not burned completely. It is a component of motor vehicle exhaust, which contributes about 56 percent of all CO emissions nationwide. In cities, 85 to 95 percent of all CO emissions may come from motor vehicle exhaust. Other sources of CO emissions include industrial processes (such as metals processing and chemical manufacturing), residential wood burning, and natural sources such as forest fires. Woodstoves, gas stoves, cigarette smoke, and unvented gas and kerosene space heaters are indoor sources of CO. The highest levels of CO in the outside air typically occur during the colder months of the year when inversion conditions are more frequent. The air pollution becomes trapped near the ground beneath a layer of warm air. CO is described as having only a local influence because it dissipates quickly. Since CO concentrations are strongly associated with motor vehicle emissions, high CO concentrations generally occur in the immediate vicinity of roadways with high 8 traffic volumes and traffic congestion, active parking lots, and in automobile tunnels. Areas adjacent to heavily traveled and congested intersections are particularly susceptible to high CO concentrations. CO is a public health concern because it combines readily with hemoglobin and thus reduces the amount of oxygen transported in the bloodstream. The health threat from lower levels of CO is most serious for those who suffer from heart disease such as angina, clogged arteries, or congestive heart failure. For a person with heart disease, a single exposure to CO at low levels may cause chest pain and reduce that person's ability to exercise; repeated exposures may contribute to other cardiovascular effects. High levels of CO can affect even healthy people. People who breathe high levels of CO can develop vision problems, reduced ability to work or learn, reduced manual dexterity, and difficulty performing complex tasks. At extremely high levels, CO is poisonous and can cause death. #### Sulfur Dioxide Sulfur Oxide (SOx) gases (including sulfur dioxide [SO2]) are formed when fuel containing sulfur, such as coal and oil is burned, and from the refining of gasoline. SOx dissolve easily in water vapor to form acid and interacts with other gases and particles in the air to form sulfates and other products that can be harmful to people and the environment. #### Lead Lead (Pb) is a metal found naturally in the environment as well as manufactured products. The major sources of lead emissions have historically been motor vehicles and industrial sources. Due to the phase out of leaded gasoline, metal processing is now the primary source of lead emissions to the air. High levels of lead in the air are typically only found near lead smelters, waste incinerators, utilities, and lead-acid battery manufacturers. Exposure of fetuses, infants and children to low levels of lead can adversely affect the development and function of the central nervous system, leading to learning disorders, distractibility, inability to follow simple commands, and lower intelligence quotient. In adults, increased lead levels are associated with increased blood pressure. #### Particulate Matter Particulate matter (PM) is the term for a mixture of solid particles and liquid droplets found in the air. Particulate matter is made up of a number of components including acids (such as nitrates and sulfates), organic chemicals, metals, and soil or dust particles. The size of particles is directly linked to their potential for causing health problems. Particles that are less than 10 micrometers in diameter (PM10) are the particles that generally pass through the throat and nose and enter the lungs. Once inhaled, these particles can affect the heart and lungs and cause serious health effects. Particles that are less than 2.5 micrometers in diameter (PM2.5) have been designated as a subset of PM10 due to their increased negative health impacts and its ability to remain suspended in the air longer and travel further. #### Reactive Organic Gases (ROG) Although not a criteria pollutant, reactive organic gases (ROGs), or volatile organic compounds (VOCs), are defined as any compound of carbon—excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate—that participates in atmospheric photochemical reactions. Although there are slight differences in the definition of ROGs and VOCs, the two terms are often used interchangeably. Indoor sources of VOCs include paints, solvents, aerosol sprays, cleansers, tobacco smoke, etc. Outdoor sources of VOCs are from combustion and fuel evaporation. A reduction in VOC emissions reduces certain chemical reactions that contribute to the formulation of ozone. VOCs are transformed into organic aerosols in the atmosphere, which contribute to higher PM10 and lower visibility. #### **Other Pollutants of Concern** #### Toxic Air Contaminants In addition to the above-listed criteria pollutants, toxic air contaminants (TACs) are another group of pollutants of concern. Sources of toxic air contaminants include industrial processes such as petroleum refining and chrome plating operations, commercial operations such as gasoline stations and dry cleaners, and motor vehicle exhaust. Cars and trucks release at least forty different toxic air contaminants. The most important of these toxic air contaminants, in terms of health risk, are diesel particulates, benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Public exposure to toxic air contaminants can result from emissions from normal operations as well as from accidental releases. Health effects of toxic air contaminants include cancer, birth defects, neurological damage, and death. TACs are less pervasive in the urban atmosphere than criteria air pollutants, however they are linked to short-term (acute) or long-term (chronic or carcinogenic) adverse human health effects. There are hundreds of different types of TACs with varying degrees of toxicity. Sources of toxic air contaminants include industrial processes, commercial operations (e.g., gasoline stations and dry cleaners), and motor vehicle exhaust. According to the 2013 California Almanac of Emissions and Air Quality, the majority of the estimated health risk from toxic air contaminants can be attributed to relatively few compounds, the most important of which is diesel particulate matter (DPM). DPM is a subset of PM2.5 because the size of diesel particles are typically 2.5 microns and smaller. The identification of DPM as a TAC in 1998 led the California Air Resources Board (CARB) to adopt the Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-fueled Engines and Vehicles in September 2000. The plan's goals are a 75-percent reduction in DPM by 2010 and an 85-percent reduction by 2020 from the 2000 baseline. Diesel engines emit a complex mixture of air pollutants, composed of gaseous and solid material. The visible emissions in diesel exhaust are known as particulate matter or PM, which includes carbon particles or "soot". Diesel exhaust also contains a variety of harmful gases and over 40 other cancer-causing substances. California's identification of DPM as a TAC was based on its potential to cause cancer, premature deaths, and other health problems. Exposure to DPM is a health hazard, particularly to children whose lungs are still developing and the elderly who may have other serious health problems. Overall, diesel engine emissions are responsible for the majority of California's potential airborne cancer risk from combustion sources. #### Asbestos Asbestos is listed as a TAC by the CARB and as a Hazardous Air Pollutant by the EPA. Asbestos occurs naturally in mineral formations and crushing or breaking these rocks, through construction or other means, can release asbestiform fibers into the air. Asbestos emissions can result from the sale or use of asbestos-containing materials, road surfacing with such materials, grading activities, and surface mining. The risk of disease is dependent upon the intensity and duration of exposure. When inhaled, asbestos fibers may remain in the lungs and with time may be linked to such diseases as asbestosis, lung cancer, and mesothelioma. The nearest likely locations of naturally occurring asbestos, as identified in the General Location Guide for Ultramafic Rocks in California prepared by the California Division of Mines and Geology, is located at Asbestos Mountain in the San Jacinto Mountains, approximately 45 miles southeast of the project site. Due to the distance to the nearest natural occurrences of asbestos, the project site is not likely to contain asbestos. #### **REGULATORY SETTING** The proposed project is addressed through the efforts of various international, federal, state, regional, and local government agencies. These agencies work jointly, as well as individually, to improve air quality through legislation, regulations, planning, policy-making, education, and a variety of programs. The agencies responsible for improving the air quality are discussed below. #### Federal - United States Environmental Protection Agency The United
States Environmental Protection Agency (EPA) is responsible for setting and enforcing the National Ambient Air Quality Standards (NAAQS) for atmospheric pollutants. It regulates emission sources that are under the exclusive authority of the federal government, such as aircraft, ships, and certain locomotives. The National Ambient Air Quality Standards (NAAQS) pollutants were identified using medical evidence and are shown below in Table 2. The EPA and the CARB designate air basins where ambient air quality standards are exceeded as "nonattainment" areas. If standards are met, the area is designated as an "attainment" area. If there is inadequate or inconclusive data to make a definitive attainment designation, they are considered "unclassified." National nonattainment areas are further designated as marginal, moderate, serious, severe, or extreme as a function of deviation from standards. Each standard has a different definition, or 'form' of what constitutes attainment, based on specific air quality statistics. For example, the Federal 8-hour CO standard is not to be exceeded more than once per year; therefore, an area is in attainment of the CO standard if no more than one 8-hour ambient air monitoring values exceeds the threshold per year. In contrast, the Federal annual PM2.5 standard is met if the three-year average of the annual average PM2.5 concentration is less than or equal to the standard. Attainment status is shown in Table 3. As part of its enforcement responsibilities, the EPA requires each state with federal nonattainment areas to prepare and submit a State Implementation Plan (SIP) that demonstrates the means to attain the national standards. The State Implementation Plan (SIP) must integrate federal, state, and local components and regulations to identify specific measures to reduce pollution, using a combination of performance standards and market-based programs within the timeframe identified in the State Implementation Plan (SIP). As indicated below in Table 3, the Basin has been designated by the EPA as a non-attainment area for ozone (O_3) and suspended particulates (PM2.5). Currently, the Basin is in attainment with the ambient air quality standards for carbon monoxide (CO), lead, sulfur dioxide (SO₂), suspended particulate matter (PM-10), and nitrogen dioxide (NO₂). #### State - California Air Resources Board The CARB, which is a part of the California Environmental Protection Agency, is responsible for the coordination and administration of both federal and state air pollution control programs within California. In this capacity, the CARB conducts research, sets the California Ambient Air Quality Standards (CAAQS), compiles emission inventories, develops suggested control measures, provides oversight of local programs, and prepares the State Implementation Plan (SIP). The California Ambient Air Quality Standards (CAAQS) for criteria pollutants are shown in Table 2. In addition, the CARB establishes emission standards for motor vehicles sold in California, consumer products (e.g., hairspray, aerosol paints, and barbeque lighter fluid), and various types of commercial equipment. The South Coast Air Basin has been designated by the CARB as a nonattainment area for ozone, PM10 and PM2.5. Currently, the South Coast Air Basin is in attainment with the ambient air quality standards for CO, lead, SO2, NO2, and sulfates and is unclassified for visibility reducing particles and Hydrogen Sulfide. On June 20, 2002, the CARB revised the PM10 annual average standard to 20 $\mu g/m^3$ and established an annual average standard for PM2.5 of 12 $\mu g/m^3$. These standards were approved by the Office of Administrative Law in June 2003 and are now effective. On September 27, 2007 CARB approved the South Coast Air Basin and the Coachella Valley 2007 Air Quality Management Plan for Attaining the Federal 8-hour Ozone and PM2.5 Standards. The plan projected attainment for the 8-hour Ozone standard by 2024 and the PM2.5 standard by 2015. On December 12, 2008 the CARB adopted Resolution 08-43, which limits NOx, PM10 and PM2.5 emissions from on-road diesel truck fleets that operate in California. On October 12, 2009 Executive Order R-09-010 was adopted that codified Resolution 08-43 into Section 2025, Title 13 of the California Code of Regulations. This regulation requires that by the year 2023 all commercial diesel trucks that operate in California shall meet model year 2010 (Tier 4) or latter emission standards. In the interim period, this regulation provides annual interim targets for fleet owners to meet. This regulation also provides a few exemptions including a onetime per year 3-day pass for trucks registered outside of California. The CARB is also responsible for regulations pertaining to TACs. The Air Toxics "Hot Spots" Information and Assessment Act (AB 2588, 1987, Connelly) was enacted in 1987 as a means to establish a formal air toxics emission inventory risk quantification program. AB 2588, as amended, establishes a process that requires stationary sources to report the type and quantities of certain substances their facilities routinely release into the South Coast Air Basin. The data is ranked by high, intermediate, and low categories, which are determined by: the potency, toxicity, quantity, volume, and proximity of the facility to nearby receptors. AB 617 Nonvehicular air pollution: criteria air pollutants and toxic air contaminants This bill requires the state board to develop a uniform statewide system of annual reporting of emissions of criteria air pollutants and TACs for use by certain categories of stationary sources. The bill requires those stationary sources to report their annual emissions of criteria air pollutants and TACs, as specified. This bill required the state board, by October 1, 2018, to prepare a monitoring plan regarding technologies for monitoring criteria air pollutants and TACs and the need for and benefits of additional community air monitoring systems, as defined. The bill requires the state board to select, based on the monitoring plan, the highest priority locations in the state for the deployment of community air monitoring systems. The bill requires an air district containing a selected location, by July 1, 2019, to deploy a system in the selected location. The bill would authorize the air district to require a stationary source that emits air pollutants in, or that materially affect, the selected location to deploy a fence-line monitoring system, as defined, or other specified real-time, on-site monitoring. The bill authorizes the state board, by January 1, 2020, and annually thereafter, to select additional locations for the deployment of the systems. The bill would require air districts that have deployed a system to provide to the state board air quality data produced by the system. By increasing the duties of air districts, this bill would impose a state-mandated local program. The bill requires the state board to publish the data on its Internet Web site. #### Regional The SCAQMD is the agency principally responsible for comprehensive air pollution control in the South Coast Air Basin. To that end, as a regional agency, the SCAQMD works directly with the Southern California Association of Governments (SCAG), county transportation commissions, and local governments and cooperates actively with all federal and state agencies. #### South Coast Air Quality Management District The SCAQMD develops rules and regulations, establishes permitting requirements for stationary sources, inspects emission sources, and enforces such measures through educational programs or fines, when necessary. The SCAQMD is directly responsible for reducing emissions from stationary, mobile, and indirect sources. It has responded to this requirement by preparing a sequence of Air Quality Management Plans (AQMPs). Air Quality Management Plan In May 2022, the SCAQMD completed the 2022 Draft AQMP. The 2022 Draft AQMP is focused on attaining the 2015 8-hour ozone standard (70 ppb) for the South Coast Air Basin and Coachella Valley. The Draft 2022 AQMP builds upon measures already in place from previous AQMPs. It also includes a variety of additional strategies such as regulation, accelerated deployment of available cleaner technologies (e.g., zero emission technologies, when cost-effective and feasible, and low NOx technologies in other applications), best management practices, co-benefits from existing programs (e.g., climate and energy efficiency), incentives, and other CAA measures to achieve the 2015 8-hour ozone standard. The 2022 AQMP was adopted December 2, 2022, by SCAQMD Governing Board. The 2022 AQMP was approved and adopted by CARB on January 26, 2023. The 2022 AQMP strategy includes the following:² - Wide adoption of zero emissions technologies anywhere available. - Low NOx technologies where zero emissions aren't feasible. - Federal Action. - Zero emissions technologies for residential and industrial sources such as water and space heaters in buildings and homes regionwide. - Incentive funding in environmental justice areas. - Prioritize benefits on the most disadvantaged communities. #### SCAQMD Rules and Regulations During construction and operation, the project must comply with applicable rules and regulations. The following are the rules that the project <u>may</u> be required to comply with, either directly, or indirectly: #### SCAQMD Rule 402 Prohibits a person from discharging from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property. #### SCAQMD Rule 403 Governs emissions of fugitive dust during construction and operation activities. Compliance with this
rule is achieved through application of standard Best Management Practices, such as application of water or chemical stabilizers to disturbed soils, covering haul vehicles, restricting vehicle speeds on unpaved roads to 15 miles per hour, sweeping loose dirt from paved site access roadways, cessation of construction activity when winds exceed 25 mph, and establishing a permanent ground cover on finished sites. Rule 403 requires that fugitive dust be controlled with best available control measures so that the presence of such dust does not remain visible in the atmosphere beyond the property line of the emission source. In addition, SCAQMD Rule 403 requires implementation of dust suppression techniques to prevent fugitive dust from creating a nuisance off-site. Applicable dust suppression techniques from Rule 403 are summarized below. Implementation of these dust suppression techniques can reduce the fugitive dust generation (and thus the PM_{10} component). Compliance with these rules would reduce impacts on nearby sensitive receptors. Rule 403 measures may include but are not limited to the following: - Apply nontoxic chemical soil stabilizers according to manufacturers' specifications to all inactive construction areas (previously graded areas inactive for 10 days or more). - Water active sites at least three times daily. (Locations where grading is to occur will be thoroughly watered prior to earthmoving.) - Cover all trucks hauling dirt, sand, soil, or other loose materials, or maintain at least 0.6 meters (2 feet) of freeboard (vertical space between the top of the load and top of the trailer) in accordance with the requirements of California Vehicle Code section 23114. - Reduce traffic speeds on all unpaved roads to 15 miles per hour (mph) or less. - Suspension of all grading activities when wind speeds (including instantaneous wind gusts) exceed 25 mph. ² SCAQMD 2022 AQMP Infographic. http://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/2022-aqmp-infographic 2 - Bumper strips or similar best management practices shall be provided where vehicles enter and exit the construction site onto paved roads or wash off trucks and any equipment leaving the site each trip. - Replanting disturbed areas as soon as practical. - During all construction activities, construction contractors shall sweep on-site and off-site streets if silt is carried to adjacent public thoroughfares, to reduce the amount of particulate matter on public streets. All sweepers shall be compliant with SCAQMD Rule 1186.1, Less Polluting Sweepers. #### SCAQMD Rule 445 Prohibits permanently installed wood burning devices into any new development. A wood burning device means any fireplace, wood burning heater, or pellet-fueled wood heater, or any similarly enclosed, permanently installed, indoor or outdoor device burning any solid fuel for aesthetic or space-heating purposes, which has a heat input of less than one million British thermal units per hour. #### SCAQMD Rule 481 Applies to all spray painting and spray coating operations and equipment. The rule states that a person shall not use or operate any spray painting or spray coating equipment unless one of the following conditions is met: - (1) The spray coating equipment is operated inside a control enclosure, which is approved by the Executive Officer. Any control enclosure for which an application for permit for new construction, alteration, or change of ownership or location is submitted after the date of adoption of this rule shall be exhausted only through filters at a design face velocity not less than 100 feet per minute nor greater than 300 feet per minute, or through a water wash system designed to be equally effective for the purpose of air pollution control. - (2) Coatings are applied with high-volume low-pressure, electrostatic and/or airless spray equipment. - (3) An alternative method of coating application or control is used which has effectiveness equal to or greater than the equipment specified in the rule. #### SCAQMD Rule 1108 Governs the sale, use, and manufacturing of asphalt and limits the volatile organic compound (VOC) content in asphalt used in the South Coast Air Basin. This rule would regulate the VOC content of asphalt used during construction. Therefore, all asphalt used during construction of the project must comply with SCAQMD Rule 1108. #### SCAQMD Rule 1113 Governs the sale, use, and manufacturing of architectural coating and limits the VOC content in paints and paint solvents. This rule regulates the VOC content of paints available during construction. Therefore, all paints and solvents used during construction and operation of the project must comply with SCAQMD Rule 1113. #### SCAQMD Rule 1143 Governs the manufacture, sale, and use of paint thinners and solvents used in thinning of coating materials, cleaning of coating application equipment, and other solvent cleaning operations by limiting their VOC content. This rule regulates the VOC content of solvents used during construction. Solvents used during the construction phase must comply with this rule. #### SCAQMD Rule 1186 Limits the presence of fugitive dust on paved and unpaved roads and sets certification protocols and requirements for street sweepers that are under contract to provide sweeping services to any federal, state, county, agency or special district such as water, air, sanitation, transit, or school district. #### SCAOMD Rule 1303 Governs the permitting of re-located or new major emission sources, requiring Best Available Control Measures and setting significance limits for PM_{10} among other pollutants. #### SCAQMD Rule 1401 New Source Review of Toxic Air Contaminants, specifies limits for maximum individual cancer risk, cancer burden, and non-cancer acute and chronic hazard index from new permit units, relocations, or modifications to existing permit units, which emit TACs. #### SCAQMD Rule 1403 Asbestos Emissions from Demolition/Renovation Activities, specifies work practice requirements to limit asbestos emissions from building demolition and renovation activities, including the removal and associated disturbance of asbestos-containing materials (ACM). #### SCAQMD Rule 2202 On-Road Motor Vehicle Mitigation Options, is to provide employers with a menu of options to reduce mobile source emissions generated from employee commutes, to comply with federal and state Clean Air Act requirements, Health & Safety Code Section 40458, and Section 182(d)(1)(B) of the federal Clean Air Act. It applies to any employer who employs 250 or more employees on a full or part-time basis at a worksite for a consecutive six-month period calculated as a monthly average. #### SCAQMD Rule 2305 The Warehouse Actions and Investments to Reduce Emissions (WAIRE) Program aims to reduce nitrogen oxide and diesel emissions associated with warehouses, help meet federal standards and improve public health. The WAIRE Program is an indirect source rule that regulates warehouse facilities to reduce emissions from the goods movement industry. Owners and operators of warehouses that have 100,000 square feet or more of indoor floor space in a single building must comply with the WAIRE Program. WAIRE is a menu-based point system in which warehouse operators are required to earn a specific number of points every year. The yearly number of points required is based on the number of trucks trips made to and from the warehouse each year, with larger trucks such as tractors or tractor-trailers multiplied by 2.5. Warehouse operators may be exempt from parts of the rule if they operate less than 50,000 square feet of warehousing activities, if the number of points required is less than 10, or if the WAIRE menu action chosen under performs due to circumstances beyond the operator's control, such as a manufacturer defect. SCAQMD Rule 316 establishes fees to fund Rule 2305 compliance activities. #### Air Quality Guidance Documents #### SCAQMD CEQA Handbook Although the SCAQMD is responsible for regional air quality planning efforts, it does not have the authority to directly regulate air quality issues associated with plans and new development projects throughout the South Coast Air Basin. Instead, this is controlled through local jurisdictions in accordance with the California Environmental Quality Act (CEQA). In order to assist local jurisdictions with air quality compliance issues the CEQA Air Quality Handbook (SCAQMD CEQA Handbook) prepared by the SCAQMD (1993) with the most current updates found at http://www.aqmd.gov/ceqa/hdbk.html, was developed in accordance with the projections and programs of the AQMP. The purpose of the SCAQMD CEQA Handbook is to assist Lead Agencies, as well as consultants, project proponents, and other interested parties in evaluating a proposed project's potential air quality impacts. Specifically, the SCAQMD CEQA Handbook explains the procedures that the SCAQMD recommends be followed for the environmental review process required by CEQA. The SCAQMD CEQA Handbook provides direction on how to evaluate potential air quality impacts, how to determine whether these impacts are significant, and how to mitigate these impacts. SCAQMD is in the process of developing an "Air Quality Analysis Guidance Handbook" to replace the CEQA Air Quality Handbook approved by the AQMD Governing Board in 1993. The 1993 CEQA Air Quality Handbook is still available but not online. In addition, there are sections of the 1993 Handbook that are obsolete. In order to assist the CEQA practitioner in conducting an air quality analysis while the new Handbook is being prepared, supplemental information regarding: significance thresholds and analysis, emissions factors, cumulative impacts emissions analysis, and other useful subjects, are available at the SCAQMD website³. The SCAQMD CEQA Handbook and supplemental information is used in this analysis. #### Southern California Association of Governments The SCAG is
the regional planning agency for Los Angeles, Orange, Ventura, Riverside, San Bernardino and Imperial Counties and addresses regional issues relating to transportation, the economy, community development and the environment. SCAG is the Federally designated metropolitan planning organization (MPO) for the majority of the southern California region and is the largest MPO in the nation. With respect to air quality planning, SCAG has prepared the Regional Transportation Plan and Regional Transportation Improvement Plan (RTIP), which addresses regional development and growth forecasts. These plans form the basis for the land use and transportation components of the AQMP, which are utilized in the preparation of air quality forecasts and in the consistency, analysis included in the AQMP. The Regional Transportation Plan, Regional Transportation Improvement Plan, and AQMP are based on projections originating within the City and County General Plans. On September 3, 2020, SCAG's Regional Council unanimously voted to approve and fully adopt Connect SoCal (2020–2045 Regional Transportation Plan/Sustainable Communities Strategy), and the addendum to the Connect SoCal Program Environmental Impact Report. Connect SoCal is a long-range visioning plan that builds upon and expands land use and transportation strategies established over several planning cycles to increase mobility options and achieve a more sustainable growth pattern. Connect SoCal outlines more than \$638 billion in transportation system investments through 2045. It was prepared through a collaborative, continuous, and comprehensive process with input from local governments, county transportation commissions, tribal governments, non-profit organizations, businesses and local stakeholders within the counties of Imperial, Los Angeles, Orange, Riverside, San Bernardino and Ventura. #### **Local - City of Rialto** Local jurisdictions, such as the City of Rialto, have the authority and responsibility to reduce air pollution through its police power and decision-making authority. Specifically, the City is responsible for the assessment and mitigation of air emissions resulting from its land use decisions. The City is also responsible for the implementation of transportation control measures as outlined in the 2022 AQMP. Examples of such measures include bus turnouts, energy-efficient streetlights, and synchronized traffic signals. In accordance with CEQA requirements and the CEQA review process, the City assesses the air quality impacts of new development projects, requires mitigation of potentially significant air quality impacts by conditioning discretionary permits, and monitors and enforces implementation of such mitigation. ³ http://www.agmd.gov/home/regulations/ceqa/air-quality-analysis-handbook. The City relies on the expertise of the SCAQMD and utilizes the SCAQMD CEQA Air Quality Handbook as the guidance document for the environmental review of plans and development proposals within its jurisdiction. The Managing Our Land Supply Chapter of the Rialto General Plan summarize air quality issues in the Basin, air quality-related plans and programs administered by federal, state, and special purpose agencies, and establishes goals and policies to improve air quality. Applicable goals and policies from the Managing Our Land Supply Chapter include: | Goal 2-35 | Reduce air pollution emissions from both mobile and stationary sources in the city. | |---------------|--| | Policy 2-35.1 | Replace Rialto's vehicle fleet with low-emission, economically sensible vehicles. | | Policy 2-35.2 | Require that new development projects incorporate design features that encourage ridesharing, transit use, park and ride facilities, and bicycle and pedestrian circulation. | | Policy 2-35.3 | Establish a balanced land use pattern and facilitate developments that provide jobs for City residents in order to reduce vehicle trips citywide. | | Policy 2-35.4 | Require new development and significant redevelopment proposals to incorporate sufficient design and operational controls to prevent release of noxious odors beyond the limits of the development site. | | Goal 2-36 | Reduce the amount of fugitive dust released into the atmosphere. | | Policy 2-36.1 | Put conditions on discretionary permits to require fugitive dust controls. | | Policy 2-36.2 | Support programs and policies of the South Coast Air Quality Management District regarding restrictions on grading operations at construction projects. | | Policy 2-36.3 | Enforce regulations that do not allow vehicles to transport aggregate or similar material upon a roadway unless the material is stabilized or covered. | Table 2 State and Federal Criteria Pollutant Standards | | Concentration / | Averaging Time | | |---|---|-------------------------------------|--| | Air Pollutant | California Standards | Federal Primary
Standards | Most Relevant Effects | | Ozone (O ₃) | 0.09 ppm/1-hour
0.07 ppm/8-hour | 0.070 ppm/8-hour | (a) Decline in pulmonary function and localized lung edema in humans and animals; (b) Risk to public health implied by alterations in pulmonary morphology and host defense in animals; (c) Increased mortality risk; (d) Risk to public health implied by altered connective tissue metabolism and altered pulmonary morphology in animals after long-term exposures and pulmonary function decrements in chronically exposed humans; (e) Vegetation damage; and (f) Property damage. | | Carbon
Monoxide
(CO) | 20.0 ppm/1-hour
9.0 ppm/8-hour | 35.0 ppm/1-hour
9.0 ppm/8-hour | (a) Aggravation of angina pectoris and other aspects of coronary heart disease; (b) Decreased exercise tolerance in persons with peripheral vascular disease and lung disease; (c) Impairment of central nervous system functions; and (d) Possible increased risk to fetuses. | | Nitrogen
Dioxide (NO ₂) | 0.18 ppm/1-hour
0.03 ppm/annual | 100 ppb/1-hour
0.053 ppm/annual | (a) Potential to aggravate chronic respiratory disease and respiratory symptoms in sensitive groups; (b) Risk to public health implied by pulmonary and extra-pulmonary biochemical and cellular changes and pulmonary structural changes; and (c) Contribution to atmospheric discoloration. | | Sulfur Dioxide
(SO ₂) | 0.25 ppm/1-hour
0.04 ppm/24-hour | 75 ppb/1-hour
0.14 ppm/annual | (a) Bronchoconstriction accompanied by symptoms which may include wheezing, shortness of breath and chest tightness, during exercise or physical activity in persons with asthma. | | Suspended
Particulate
Matter (PM ₁₀) | 50 μg/m³/24-hour
20 μg/m³/annual | 150 μg/m ³ /24-hour | (a) Exacerbation of symptoms in sensitive patients with respiratory or cardiovascular | | Suspended
Particulate
Matter (PM _{2.5}) | 12 μg/m³ / annual | 35 μg/m³/24-hour
12 μg/m³/annual | disease; (b) Declines in pulmonary function growth in children; (c) Increased risk of premature death from heart or lung diseases in elderly. | | Sulfates | 25 μg/m³/24-hour | No Federal Standards | (a) Decrease in ventilatory function; (b) Aggravation of asthmatic symptoms; (c) Aggravation of cardio-pulmonary disease; (d) Vegetation damage; (e) Degradation of visibility; (f) property damage. | | Lead | 1.5 µg/m³/30-day | 0.15 μg/m³/3-month rolling | (a) Learning disabilities; (b) Impairment of blood formation and nerve conduction. | | Visibility
Reducing
Particles | Extinction coefficient of 0.23 per kilometer-visibility of 10 miles or more due to particles when humidity is less than 70 percent. | No Federal Standards | Visibility impairment on days when relative humidity is less than 70 percent. | Source: https://ww2.arb.ca.gov/sites/default/files/2020-07/aaqs2.pdf Table 3 South Coast Air Basin Attainment Status | Pollutant | State Status | National Status | |------------------|---------------|---------------------------| | Ozone | Nonattainment | Nonattainment | | Carbon monoxide | Attainment | Unclassifiable/Attainment | | Nitrogen dioxide | Attainment | Unclassifiable/Attainment | | Sulfur dioxide | Attainment | Unclassifiable/Attainment | | PM10 | Nonattainment | Nonattainment | | PM2.5 | Attainment | Unclassifiable/Attainment | Source: Source (Federal and State Status): SCAQMD 2022 Air Quality Management Plan (December 2022) http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2022-air-quality-management-plan/final-2022-aqmp/final-2022-aqmp.pdf?sfvrsn=16. #### MONITORED AIR QUALITY The air quality at any site is dependent on the regional air quality and local pollutant sources. Regional air quality is determined by the release of pollutants throughout the air basin. Estimates of the existing emissions in the Basin provided in the Final 2022 Air Quality Management Plan prepared by SCAQMD (December 2022) indicate that collectively, mobile sources account for 46 percent of the VOC, 85 percent of the NOx emissions, 89 percent of the CO emissions and 29 percent of directly emitted PM2.5, with another 18 percent of PM2.5 from road dust. The SCAQMD has divided the South Coast Air Basin into 38 air-monitoring areas with a designated ambient
air monitoring station representative of each area. The project site is located in the Central San Bernardino Valley Air Monitoring Area (Area 34). The nearest air monitoring station to the project site is the Fontana-Arrow Highway Monitoring Station (Fontana Station). The Fontana Station is located approximately 5.4 miles southwest of the project site at 14360 Arrow Boulevard, Fontana. However, it should be noted that due to the air monitoring station's distance from the project site, recorded air pollution levels at the air monitoring station reflect with varying degrees of accuracy local air quality conditions at the project site. Table 4 presents the monitored pollutant levels from the Fontana Station. Table 4 summarizes 2020 through 2022 published monitoring data, which is the most recent 3-year period available. The data shows that during the past few years, the project area has exceeded the ozone and particulate matter (PM10 and PM2.5) standards. #### Ozone During the 2020 to 2022 monitoring period, the State 1-hour concentration standard for ozone was exceeded between 44 and 56 days each year at the Fontana Station. The State 8-hour ozone standard has been exceeded between 70 and 91 days each year over the past three years at the Fontana Station. The Federal 8-hour ozone standard was exceeded between 68 and 89 days each year over the past three years at the Fontana Station. Ozone is a secondary pollutant as it is not directly emitted. Ozone is the result of chemical reactions between other pollutants, most importantly hydrocarbons and NO_2 , which occur only in the presence of bright sunlight. Pollutants emitted from upwind cities react during transport downwind to produce the oxidant concentrations experienced in the area. Many areas of the SCAQMD contribute to the ozone levels experienced at the monitoring station, with the more significant areas being those directly upwind. #### **Carbon Monoxide** CO is another important pollutant that is due mainly to motor vehicles. The Fontana Station did not record an exceedance of the state or federal 8-hour CO standard for the last three years. #### Nitrogen Dioxide The Fontana Station did not record an exceedance of the State or Federal NO₂ standards for the last three years. #### Particulate Matter The State 24-hour concentration standards for PM10 were exceeded between three and six days each year over the last three years at the Fontana Station. Over the past three years, the Fontana Station did not record an exceedance of the Federal 24-hour standards for PM10. Over the last three years, the Federal 24-hour standard for PM2.5 was exceeded between one and four days each year at the Fontana Station. According to the EPA, some people are much more sensitive than others to breathing fine particles (PM10 and PM2.5). People with influenza, chronic respiratory and cardiovascular diseases, and the elderly may suffer worsening illness and premature death due to breathing these fine particles. People with bronchitis can expect aggravated symptoms from breathing in fine particles. Children may experience decline in lung function due to breathing in PM10 and PM2.5. Other groups considered sensitive are smokers and people who cannot breathe well through their noses. Exercising athletes are also considered sensitive, because many breathe through their mouths during exercise. Table 4 Air Quality Monitoring Summary | | | | Year | | |----------------------------------|---------------------------------------|-------|-------|-------| | | Pollutant (Standard) ¹ | 2020 | 2021 | 2022 | | | Maximum 1-Hour Concentration (ppm) | 0.151 | 0.125 | 0.144 | | | Days > CAAQS (0.09 ppm) | 56 | 44 | 44 | | Ozone: | Maximum 8-Hour Concentration (ppm) | 0.112 | 0.104 | 0.108 | | | Days > NAAQS (0.070 ppm) | 89 | 81 | 68 | | | Days > CAAQS (0.070 ppm) | 91 | 83 | 70 | | | Maximum 8-Hour Concentration (ppm) | * | * | * | | Carbon
Monoxide: ² | Days > CAAQS (9 ppm) | 0 | 0 | 0 | | viorioxide. | Days > NAAQS (9 ppm) | 0 | 0 | 0 | | Vitrogen | Maximum 1-Hour Concentration (ppm) | 0.066 | 0.067 | 0.069 | | Dioxide: ² | Days > CAAQS (0.18 ppm) | 0 | 0 | 0 | | | Maximum 24-Hour Concentration (μg/m³) | 76.8 | 73.8 | 62.4 | | nhalable
Particulates | Days > NAAQS (150 μg/m3) | 0 | 0 | 0 | | PM10): | Days > CAAQS (50 μg/m3) | 6 | 3 | 6 | | , | Annual Average (μg/m3) | 37.9 | 30.1 | 32.0 | | Jltra-Fine | Maximum 24-Hour Concentration (μg/m3) | 57.6 | 55.1 | 38.1 | | Particulates | Days > NAAQS (35 μg/m3) | 4 | 2 | 1 | | PM2.5): ² | Annual Average (µg/m3) | 12.8 | 12.1 | 10.9 | #### Notes: Source: http://www.arb.ca.gov/adam/topfour/topfour1.php. Data from the Fontana Monitoring Station, unless otherwise noted. ⁽¹⁾ CAAQS = California Ambient Air Quality Standard; NAAQS = National Ambient Air Quality Standard; ppm = parts per million ^{*} Means there was insufficient data available to determine value. #### **AIR QUALITY STANDARDS** #### **Significance Thresholds** Appendix G of the State CEQA Guidelines Appendix G of the State CEQA Guidelines states that, where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to make a significance determination. Pursuant to Appendix G, the project would result in a significant impact related to air quality if it would: - Conflict with or obstruct the implementation of the applicable air quality plan; - Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard; - Expose sensitive receptors to substantial pollutant concentrations; or - Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people. The CEQA Guidelines Section 15064.7 provides the significance criteria established by the applicable air quality management district or air pollution control district, when available, may be relied upon to make determinations of significance. The potential air quality impacts of the project are, therefore, evaluated according to thresholds developed by SCAQMD in their CEQA Air Quality Handbook, Air Quality Analysis Guidance Handbook, and subsequent guidance, which are listed below.⁴ Therefore, the project would result in a potentially significant impact to air quality if it would: - AIR-1: Conflict with or obstruct the implementation of the applicable air quality plan; - AIR-2: Violate any air quality standard or contribute substantially to an existing or projected air quality violation as a result of: - Criteria pollutant emissions during construction (direct and indirect) in excess of the SCAQMD's regional significance thresholds, - Criteria pollutant emissions during operation (direct and indirect) in excess of the SCAQMD's regional significance thresholds. - AIR-3: Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors); - AIR-4: Expose sensitive receptors to substantial pollutant concentrations that would: - Exceed SCAQMD's localized significance thresholds, - Cause or contribute to the formation of CO hotspots. - AIR-5: Create objectionable odors affecting a substantial number of people. While the SCAQMD CEQA Air Quality Handbook contains significance thresholds for lead, Project construction and operation would not include sources of lead emissions and would not exceed the established thresholds for lead. Unleaded fuel and unleaded paints have virtually eliminated lead emissions from industrial land use projects such as the Project. As a result, lead emissions are not further evaluated herein. _ The SCAQMD is in the process of developing an Air Quality Analysis Guidance Handbook to replace the CEQA Air Quality Handbook. In the interim, supplemental guidance has been adopted by the SCAQMD. The potential air quality impacts of the project are, therefore, evaluated according to numeric indicators developed by the SCAQMD in the CEQA Air Quality Handbook and supplemental guidance from the SCAQMD.⁵ #### **Regional Air Quality** Many air quality impacts that derive from dispersed mobile sources, which are the dominate pollution generators in the basin, often occurs hours later and miles away after photochemical processes have converted primary exhaust pollutants into secondary contaminants such as ozone. The incremental regional air quality impact of an individual project is generally very small and difficult to measure. Therefore, the SCAQMD has developed significance thresholds based on the volume of pollution emitted rather than on actual ambient air quality because the direct air quality impact of a project is not quantifiable on a regional scale. The SCAQMD CEQA Handbook states that any project in the South Coast Air Basin with daily emissions that exceed any of the identified significance thresholds should be considered as having an individually and cumulatively significant air quality impact. For the purposes to this air quality impact analysis, a regional air quality impact would be considered significant if emissions exceed the SCAQMD significance thresholds identified in Table 5. #### **Local Air Quality** Project-related construction air emissions may have the potential to exceed the State and Federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the South Coast Air Basin. In order to assess local air quality impacts the SCAQMD has developed Localized Significance Thresholds (LSTs) to assess the project-related air emissions in the project vicinity. The SCAQMD has also provided Final Localized Significance Threshold Methodology (LST Methodology), June 2003, which
details the methodology to analyze local air emission impacts. The Localized Significance Threshold Methodology found that the primary emissions of concern are NO₂, CO, PM10, and PM2.5. The significance thresholds for the local emissions of NO₂ and CO are determined by subtracting the highest background concentration from the last three years of these pollutants from Table 4 above, from the most restrictive ambient air quality standards for these pollutants that are outlined in the Localized Significance Thresholds. Table 5 shows the ambient air quality standards for NO₂, CO, and PM10 and PM2.5. #### **Toxic Air Contaminants** #### Construction Temporary TAC emissions associated with DPM emissions from heavy construction equipment would occur during the construction phase of the Project. According to the Office of Environmental Health Hazard Assessment (OEHHA)⁶ and the SCAQMD Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis (August 2003),⁷ health effects from TACs are described in terms of individual cancer risk. "Individual Cancer Risk" is the likelihood that a person exposed to concentrations of TACs over a 30-year lifetime will contract cancer based on the use of standard risk- Youth Coast Air Quality Management District, Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis, August 2003, http://www.aqmd.gov/docs/defaultsource/cega/handbook/mobile-source-toxics-analysis.doc?sfvrsn=2. ⁵ While the SCAQMD CEQA Air Quality Handbook contains significance thresholds for lead, Project construction and operation would not include sources of lead emissions and would not exceed the established thresholds for lead. Unleaded fuel and unleaded paints have virtually eliminated lead emissions from residential land use projects such as the Project. As a result, lead emissions are not further evaluated herein. ⁶ Office of Environmental Health Hazard Assessment, Air Toxic Hot Spots Program Risk Assessment Guidelines Guidance Manual for Preparation of Health Risk Assessment, February 2015, https://oehha.ca.gov/media/downloads/crnr/2015guidancemanual.pdf. assessment methodology. Additionally, the SCAQMD CEQA guidance does not require a HRA for short-term construction emissions. Construction activities associated with the project would be sporadic, transitory, and short-term in nature (approximately four months). Thus, construction of the project would not result in a substantial, long-term (i.e., 30-year) source of TAC emissions. Nonetheless, a qualitative assessment of TAC emissions associated with short-term construction TAC emissions is provided in the analysis section below. #### Operation The project proposes to develop the site with truck storage uses; however, the nearest sensitive receptors are located approximately 1,542 feet to the southeast of the project site. Therefore, sensitive receptors would not be exposed to toxic sources of air pollution. #### **Odor Impacts** The SCAQMD CEQA Handbook states that an odor impact would occur if the proposed project creates an odor nuisance pursuant to SCAQMD Rule 402, which states: A person shall not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property. The provisions of this rule shall not apply to odors emanating from agricultural operations necessary for the growing of crops or the raising of fowl or animals. If the proposed project results in a violation of Rule 402 with regards to odor impacts, then the proposed project would create a significant odor impact. ## Table 5 SCAQMD Air Quality Significance Thresholds | | Mass Daily T | hresholds ¹ | | | | | |--|------------------------------|---|---------------------|--|--|--| | Pollutai | nt | Construction (lbs/day) | Operation (lbs/day) | | | | | NOx | | 100 | 55 | | | | | VOC | | 75 | 55 | | | | | PM10 | | 150 | 150 | | | | | PM2.5 |) | 55 | 55 | | | | | SOx | | 150 | 150 | | | | | СО | | 550 | 550 | | | | | Lead | | 3 | 3 | | | | | | Toxic Air Contaminants (TACs | , Odor and GHG Thresholds | | | | | | TACs (including carginogens and non-
carcinogens) | | er Risk ≥ 10 in 1 million
s cancer cases (in areas ≥ 1 in 1 million)
dex > 1.0 (project increment) | | | | | | Odor | Project creates an odor nuis | sance pursuant to South Coast AQMD R | Rule 402 | | | | | GHG | 10,000 MT/yr CO2e for inc | lustrial facilities | | | | | | | Ambient Air Quality Standa | rds for Criteria Pollutants ² | | | | | | NO2 | | n Coast AQMD is in attainment; project is significant if it causes or tributes to an exceedance of the following attainment standards: | | | | | | 1-hour average | | 0.18 ppm (state) | | | | | | annual arithmetic mean | | 0.03 ppm (state) & 0.0534 ppm (fede | ral) | | | | | PM10 | | | | | | | | 24-hour average | 10.4 | 10.4 $\mu g/m^3$ (construction) ³ & 2.5 $\mu g/m^3$ (operation) | | | | | | annual average | | 1.0 ug/m^3 | | | | | | PM2.5 | | | | | | | | 24-hour average | 10.4 | 10.4 μg/m ³ (construction) ³ & 2.5 μg/m ³ (operation) | | | | | | SO2 | | | | | | | | 1-hour average | 0.25 p | 0.25 ppm (state) & 0.075 ppm (federal – 99th percentile) | | | | | | 24-hour average | | 0.04 ppm (state) | | | | | | Sulfate | | | | | | | | 24-hour average | | 25 μg/m^3 (state) | | | | | | СО | | South Coast AQMD is in attainment; project is significant if it causes or contributes to an exceedance of the following attainment standards: | | | | | | 1-hour average | | 20 ppm (state) & 35 ppm (federal) | | | | | | 8-hour average | | 9 ppm (state/federal) | | | | | | Lead | | | | | | | | 30-day average | | 1.5 µg/m^3 (state) | | | | | | Rolling 3-month average | | 0.15 µg/m^3 (federal) | | | | | #### Notes: Source: http://www.aqmd.gov/home/rules-compliance/ceqa/air-quality-analysis-handbook - (1) Source: South Coast AQMD CEQA Handbook (South Coast AQMD, 1993) - (2) Ambient air quality thresholds for criteria pollutants based on South Coast AQMD Rule 1303, Table A-2 unless otherwise stated. - (3) Ambient air quality threshold based on South Coast AQMD Rule 403. #### **SHORT-TERM CONSTRUCTION EMISSIONS** Construction activities associated with the proposed project would have the potential to generate air emissions, toxic air contaminant emissions, and odor impacts. Assumptions for the phasing, duration, and required equipment for the construction of the proposed project were obtained from the project applicant. The construction activities for the proposed project are anticipated to include: demolition of existing paving totaling approximately 1.932 acres⁸; grading of approximately 1.932 acres⁹; landscaping of approximately 21,650 square feet; paving of a parking lot with 28 automobile parking spaces and 57 truck parking spaces¹⁰; and application of architectural coatings. Grading of the proposed project is anticipated to balance. See Appendix B for more details. The proposed project is anticipated to start construction no sooner than February 2025, being completed June 2025. The project is anticipated to be operational in 2025. #### Methodology The following provides a discussion of the methodology used to calculate regional construction air emissions and an analysis of the proposed project's short-term construction emissions for the criteria pollutants. The construction-related regional air quality impacts have been analyzed for both criteria pollutants and GHGs. Emissions are estimated using the CalEEMod (Version 2022.1.1.24) software, which is a statewide land use emissions computer model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantify potential criteria pollutant and GHG emissions from a variety of land use projects. CalEEMod was developed in collaboration with the air districts of California. Regional data (e.g., emission factors, trip lengths, meteorology, source inventory, etc.) have been provided by the various California air districts to account for local requirements and conditions. The model is considered to be an accurate and comprehensive tool for quantifying air quality and GHG impacts from land use projects throughout California and is recommended by the SCAQMD.¹¹ Daily regional emissions during construction are forecasted by assuming a conservative estimate of construction activities (i.e., assuming all construction occurs at the earliest feasible date) and applying the mobile source and fugitive dust emissions factors. The input values used in this analysis were adjusted to be project-specific for the construction schedule and the equipment used was based on CalEEMod defaults. The CalEEMod program uses the EMFAC2021 computer program to calculate the emission rates specific for the southwestern portion of Riverside County for construction-related employee vehicle trips and the OFFROAD2017 computer program to calculate emission rates for heavy truck operations. EMFAC2021 and OFFROAD2017 are computer programs generated by CARB that calculates composite emission rates for vehicles. Emission rates are reported by the program in grams per trip and grams per mile or grams per running hour. Daily truck trips and CalEEMod default trip length data were used to assess roadway emissions from truck exhaust. The maximum daily emissions are estimated values for the worst-case day and do not represent the emissions that would occur for every day of project construction. The maximum
daily emissions are compared to the SCAQMD daily regional numeric indicators. Detailed construction equipment lists, construction scheduling, and emission calculations are provided in Appendix B. The project will be required to comply with existing SCAQMD rules for the reduction of fugitive dust emissions. SCAQMD Rule 403 establishes these procedures. Compliance with this rule is achieved through ¹¹ South Coast Air Quality Management District, California Emissions Estimator Model, http://www.aqmd.gov/caleemod/. _ ⁸ Site is approximately 1.96 acres with an approximately 1,220 square foot existing building to remain; therefore, demolition is of existing paving only. Existing paving covers remainder of site or approximately 1.932 acres. ⁹ Site is approximately 1.96 acres with an approximately 1,220 square foot existing building to remain; therefore, it is assumed that approximately 1.932 acres are to be graded. ¹⁰ Site is approximately 1.96 acres with an approximately 1,220 square foot existing building to remain and proposed landscaping is approximately 21,650 square feet (~0.497 acres); therefore, paved area of parking lot modeled as ~62,570 sf or ~1.435 acres. application of standard best management practices in construction and operation activities, such as application of water or chemical stabilizers to disturbed soils, managing haul road dust by application of water, covering haul vehicles, restricting vehicle speeds on unpaved roads to 15 mph, sweeping loose dirt from paved site access roadways, cessation of construction activity when winds exceed 25 mph and establishing a permanent, stabilizing ground cover on finished sites. In addition, projects that disturb 50 acres or more of soil or move 5,000 cubic yards of materials per day are required to submit a Fugitive Dust Control Plan or a Large Operation Notification Form to SCAQMD. Based on the size of the Project area (approximately 1.96 acres) a Fugitive Dust Control Plan or Large Operation Notification would not be required. SCAQMD's Rule 403 minimum requirements require that the application of the best available dust control measures is used for all grading operations and include the application of water or other soil stabilizers in sufficient quantity to prevent the generation of visible dust plumes. Compliance with Rule 403 would require the use of water trucks during all phases where earth moving operations would occur. Compliance with Rule 403 has been included in the CalEEMod modeling for the proposed project. Per SCAQMD Rule 1113 as amended on June 3, 2011, the architectural coatings that would be applied after January 1, 2014 will be limited to an average of 50 grams per liter or less of VOCs for building coatings and 100 grams per liter or less of VOCs for traffic coatings. CalEEMod defaults have been adjusted accordingly. The phases of the construction activities which have been analyzed below for each phase are: (1) demolition, (2) grading, (3) paving, and (4) application of architectural coatings. Details pertaining to the project's construction timing and the type of equipment modeled for each construction phase are available in the CalEEMod output in Appendix B. #### **Construction-Related Regional Impacts** The maximum construction-related criteria pollutant emissions from the proposed project are shown below in Table 6. Table 6 shows that none of the project's emissions will exceed regional thresholds. Therefore, a less than significant regional air quality impact would occur from construction of the proposed project. #### **Construction-Related Local Impacts** Construction-related air emissions may have the potential to exceed the State and Federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the South Coast Air Basin. The proposed project has been analyzed for the potential local air quality impacts created from: construction-related fugitive dust and diesel emissions; from toxic air contaminants; and from construction-related odor impacts. Local Air Quality Impacts from Construction The SCAQMD has published a "Fact Sheet for Applying CalEEMod to Localized Significance Thresholds" (South Coast Air Quality Management District 2011b). CalEEMod calculates construction emissions based on the number of equipment hours and the maximum daily disturbance activity possible for each piece of equipment. In order to compare CalEEMod reported emissions against the localized significance threshold lookup tables, the CEQA document should contain the following parameters: - (1) The off-road equipment list (including type of equipment, horsepower, and hours of operation) assumed for the day of construction activity with maximum emissions. - (2) The maximum number of acres disturbed on the peak day. - (3) Any emission control devices added onto off-road equipment. - (4) Specific dust suppression techniques used on the day of construction activity with maximum emissions. ¹² The existing building is to remain and no new building are being proposed; therefore, no building construction phase has been modeled. 2160 Stonehurst Drive Truck Yard Air Quality and Global Climate Change Impact Analysis The CalEEMod output in Appendix B show the equipment used for this analysis. As shown in Table 7, the maximum number of acres disturbed in a day would be 2 acres during demolition and grading. The local air quality emissions from construction were analyzed using the SCAQMD's Mass Rate Localized Significant Threshold Look-up Tables and the methodology described in Localized Significance Threshold Methodology prepared by SCAQMD (revised July 2008). The Look-up Tables were developed by the SCAQMD in order to readily determine if the daily emissions of CO, NOx, PM10, and PM2.5 from the proposed project could result in a significant impact to the local air quality. The emission thresholds were calculated based on the Central San Bernardino Valley source receptor area (SRA) 34 and a disturbance value of two acres per day. According to LST Methodology, any receptor located closer than 25 meters (82 feet) shall be based on the 25-meter thresholds. The nearest sensitive receptors to the project site are the existing single-family residential uses located approximately 1,542 feet (~470 meters) to the southeast of the project site; therefore, to be conservative, the SCAQMD Look-up Tables for 200 meters was used. Table 8 shows the on-site emissions from the CalEEMod model for the different construction phases and the LST emissions thresholds. The data provided in Table 8 shows that none of the analyzed criteria pollutants would exceed the local emissions thresholds at the nearest sensitive receptors. Therefore, a less than significant local air quality impact would occur from construction of the proposed project. #### **Construction-Related Health Impacts** Regarding health effects related to criteria pollutant emissions, the applicable significance thresholds are established for regional compliance with the state and federal ambient air quality standards, which are intended to protect public health from both acute and long-term health impacts, depending on the potential effects of the pollutant. Because regional and local emissions of criteria pollutants during construction of the project would be below the applicable thresholds, it would not contribute to long-term health impacts related to nonattainment of the ambient air quality standards. Therefore, significant adverse acute health impacts as a result of project construction are not anticipated. #### **Construction-Related Toxic Air Contaminant Impacts** The greatest potential for TAC emissions would be related to diesel particulate emissions associated with heavy equipment operations during construction of the proposed project. According to the Office of Environmental Health Hazard Assessment (OEHHA)¹³ and the SCAQMD Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis (August 2003),¹⁴ health effects from TACs are described in terms of individual cancer risk based on a lifetime (i.e., 30-year) resident exposure duration. Given the temporary and short-term construction schedule (approximately four months), the project would not result in a long-term (i.e., lifetime or 30-year) exposure as a result of project construction. Furthermore, construction-based particulate matter (PM) emissions (including diesel exhaust emissions) do not exceed any local or regional thresholds. The project would comply with the CARB Air Toxics Control Measure that limits diesel powered equipment and vehicle idling to no more than 5 minutes at a location, and the CARB In-Use Off-Road Diesel Vehicle Regulation; compliance with these would minimize emissions of TACs during construction. The project would also comply with the requirements of SCAQMD Rule 1403 if asbestos is found during the renovation and construction activities. Therefore, impacts from TACs during construction would be less than significant. South Coast Air Quality Management District, Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis, August 2003, http://www.aqmd.gov/docs/default-source/ceqa/handbook/mobile-source-toxics-analysis.doc?sfvrsn=2. ¹³ Office of Environmental Health Hazard Assessment, Air Toxic Hot Spots Program Risk Assessment Guidelines Guidance Manual for Preparation of Health Risk Assessment, February 2015, https://oehha.ca.gov/media/downloads/crnr/2015guidancemanual.pdf. ## **Construction-Related Odor Impacts** Potential sources that may emit odors during construction activities include the application of materials such as asphalt pavement. The objectionable odors that may be produced during the construction process are short-term in nature and the odor emissions are expected to cease upon the drying or
hardening of the odor producing materials. Due to the short-term nature and limited amounts of odor producing materials being utilized, no significant impact related to odors would occur during construction of the proposed project. Diesel exhaust and VOCs would be emitted during construction of the project, which are objectionable to some; however, emissions would disperse rapidly from the project site and therefore should not reach an objectionable level at the nearest sensitive receptors. Table 6 Construction-Related Regional Pollutant Emissions | | | Pollutant Emissions (pounds/day) | | | | | |--|------------------|----------------------------------|-------|-----------------|------|-------| | Activity | ROG ³ | NOx | CO | SO ₂ | PM10 | PM2.5 | | Maximum Daily Emissions ^{1,2} | 2.49 | 18.80 | 22.30 | 0.03 | 3.90 | 2.18 | | SCAQMD Thresholds | 75 | 100 | 550 | 150 | 150 | 55 | | Exceeds Thresholds? | No | No | No | No | No | No | Source: CalEEMod Version 2022.1.1.24. - (1) Includes on-site and off-site emissions. On-site demolition and grading PM-10 and PM-2.5 emissions show compliance with SCAQMD Rule 403 for fugitive dust. - (2) Construction, painting and paving phases may overlap. Table 7 Maximum Number of Acres Disturbed Per Day | Activity | Equipment | Number | Acres/8hr-day | Total Acres | |-----------------|-------------------------------|--------|---------------|-------------| | Demolition | Rubber Tired Dozers | 1 | 0.5 | 0.5 | | Demolition | Crawler Tractors ¹ | 3 | 0.5 | 1.5 | | Total for phase | | - | - | 2.0 | | | Rubber Tired Dozers | 1 | 0.5 | 0.5 | | Grading | Graders | 1 | 0.5 | 0.5 | | | Crawler Tractors ¹ | 2 | 0.5 | 1.0 | | Total for phase | | - | - | 2.0 | Source: South Coast AQMD, Fact Sheet for Applying CalEEMod to Localized Significance Thresholds, 2011b. (1) Tractor/loader/backhoe is a suitable surrogate for a crawler tractor per SCAQMD staff. Table 8 Local Construction Emissions at the Nearest Receptors | | | On-Site Pollutant Emissions (pounds/day) | | | | | | |--------------------------------|-------|--|------|-------|--|--|--| | Activity | NOx | СО | PM10 | PM2.5 | | | | | Demolition | 13.9 | 15.1 | 1.36 | 0.64 | | | | | Grading | 14.10 | 14.50 | 3.40 | 1.93 | | | | | Paving | 4.63 | 6.50 | 0.20 | 0.19 | | | | | Architectural Coating | 0.88 | 1.14 | 0.03 | 0.03 | | | | | SCAQMD Thresholds ¹ | 378 | 6,346 | 83 | 26 | | | | | Exceeds Threshold? | No | No | No | No | | | | Source: Calculated from CalEEMod and SCAQMD's Mass Rate Look-up Tables for 2 acres at a distance of 200 m, to be conservative, in SRA 34 Central San Bernardino Valley. Note: The project will disturb up to a maximum of 2 acres a day during demolition and grading (see Table 7). ⁽¹⁾ The nearest sensitive receptors are the existing single-family residential uses located approximately 1,542 feet (~470 meters) to the southeast of the project site; therefore, to be conservative, the 200 meter threshold was used. ## **LONG-TERM OPERATIONAL EMISSIONS** The on-going operation of the proposed project would result in a long-term increase in air quality emissions. This increase would be due to emissions from the project-generated vehicle trips and through operational emissions from the on-going use of the proposed project. The following section provides an analysis of potential long-term air quality impacts due to: regional air quality and local air quality impacts with the ongoing operations of the proposed project. ## **Operations-Related Regional Air Quality Impacts** The potential operations-related air emissions have been analyzed below for the criteria pollutants and cumulative impacts. Operations-Related Criteria Pollutants Analysis The operations-related criteria air quality impacts created by the proposed project have been analyzed through the use of the CalEEMod model. The operating emissions were based on the year 2025, which is the anticipated opening year for the proposed project. The operations daily emissions printouts from the CalEEMod model are provided in Appendix B. The CalEEMod analyzes operational emissions from area sources, energy usage, and mobile sources, which are discussed below. #### Mobile Sources Mobile sources include emissions from the additional vehicle miles generated from the proposed project. The vehicle trips associated with the proposed project have been analyzed by inputting the project-generated vehicular trips (trip generation rate) from the Stonehurst Truck Storage Trip Generation Memo (Trip Generation Memo) prepared by TJW Engineering, Inc. (May 15, 2024) into the CalEEMod Model. The Trip Generation Memo included three methodologies to determine the proposed project's trip generation rates. Trip Generation Methodology 1 from the Trip Generation Memo was utilized in the modeling of this report as it most closely resembles the anticipated trip generation of the proposed project. Using Trip Generation Methodology 1 from the Trip Generation Memo, it was found that the proposed project would create approximately 131 vehicle trips per day (non-PCE) and 187 vehicle trips per day (PCE) with a trip generation rate of 3.68 trips per parking space for passenger vehicle spaces and 0.494 trips per parking space for truck spaces. The program then applies the emission factors for each trip which is provided by the EMFAC2017 model to determine the vehicular traffic pollutant emissions. For Trip Generation Methodology 1, the Trip Generation Memo found that the proposed warehouse would create 103 automobile round trips, 0 2-axle truck round trips, 0 3-axle truck round trips, and 28 4+-axle truck round trips per day (non-PCE). The vehicle mix for the Project was changed in CalEEMod to match the Trip Generation Memo for Trip Generation Methodology 1 (see ¹⁶ The existing building to remain is approximately 1,220 square feet; therefore, the calculated trip generation for modeling purposes, is 131 spaces/1.220 TSF = 107.38 trips per TSF per day. _ ¹⁵ Trip Generation Methodology 1 estimated the project generated vehicle trips based on the trip generation rates gathered from the adjacent site to the west's driveway volumes. It is anticipated that the same tenant that occupies this adjacent site is to also occupy the project site. Table 9) and the percentages in CalEEMod were changed to 78.6% autos (H-W) and 21.4% trucks (W-O) to match the overall vehicle percentages given in the Trip Generation Memo for Trip Generation Methodology 1. All trip lengths were based on the urban default values. #### Area Sources Per the CAPCOA Appendix A Calculation Details for CalEEMod, area sources include emissions from consumer products, landscape equipment and architectural coatings. Landscape maintenance includes fuel combustion emissions from equipment such as lawn mowers, rototillers, shredders/grinders, blowers, trimmers, chain saws, and hedge trimmers, as well as air compressors, generators, and pumps. As specifics were not known about the landscaping equipment fleet, CalEEMod defaults were used to estimate emissions from landscaping equipment. No changes were made to the default area source parameters. ## Energy Usage Energy usage includes emissions from the generation of electricity and natural gas used on-site. No changes were made to the default energy usage parameters. #### Project Impacts The maximum daily pollutant emissions created from the proposed project's long-term operations have been calculated and are shown below in Table 10. The results show that none of the SCAQMD regional thresholds would be exceeded. Therefore, a less than significant regional air quality impact would occur from operation of the proposed project. ## **Operations-Related Local Air Quality Impacts** Project-related air emissions may have the potential to exceed the State and Federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the South Coast Air Basin. The proposed project has been analyzed for the potential local CO emission impacts from the project-generated vehicular trips and from the potential local air quality impacts from on-site operations. The following analysis analyzes the vehicular CO emissions, local impacts from on-site operations per SCAQMD LST methodology, and odor impacts. Local CO Emission Impacts from Project-Generated Vehicular Trips CO is the pollutant of major concern along roadways because the most notable source of CO is motor vehicles. For this reason, CO concentrations are usually indicative of the local air quality generated by a roadway network and are used as an indicator of potential local air quality impacts. Local air quality impacts can be assessed by comparing future without and with project CO levels to the State and Federal CO standards which were presented above. To determine if the proposed project could cause emission levels in excess of the CO standards discussed above, a sensitivity analysis is typically conducted to determine the potential for CO "hot spots" at a number of intersections in the general project vicinity. Because of reduced speeds and vehicle queuing, "hot spots" potentially can occur at high traffic volume intersections with a Level of Service E or worse. The analysis prepared for CO attainment in the South Coast Air Basin by the SCAQMD can be used to assist in evaluating the potential for CO exceedances in the South Coast Air Basin. CO attainment was thoroughly analyzed as part of the SCAQMD's 2003 AQMP and the 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan). As discussed in the 1992 CO Plan, peak CO concentrations in the South Coast Air Basin are due to unusual meteorological and topographical conditions, and not due to the impact of particular intersections. Considering the region's unique meteorological conditions and the increasingly stringent CO emissions standards, CO modeling was
performed as part of 1992 CO Plan and subsequent plan updates and air quality management plans. In the 1992 CO Plan, a CO hot spot analysis was conducted for four busy intersections in Los Angeles at the peak morning and afternoon time periods. The intersections evaluated included: South Long Beach Boulevard and Imperial Highway (Lynwood); Wilshire Boulevard and Veteran Avenue (Westwood); Sunset Boulevard and Highland Avenue (Hollywood); and La Cienega Boulevard and Century Boulevard (Inglewood). These analyses did not predict a violation of CO standards. The busiest intersection evaluated was that at Wilshire Boulevard and Veteran Avenue, which has a daily traffic volume of approximately 100,000 vehicles per day (2003 AQMP Appendix V, Table 4-7). The Los Angeles County Metropolitan Transportation Authority¹⁷ evaluated the Level of Service in the vicinity of the Wilshire Boulevard/Veteran Avenue intersection and found it to be Level of Service E during the morning peak hour and Level of Service F during the afternoon peak hour (MTA, Exhibit 2-5 and 2-6). For Trip Generation Methodology 1, the Trip Generation Memo showed that the proposed project would generate a maximum of approximately 131 daily vehicle trips. The 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan) showed that an intersection which has a daily traffic volume of approximately 100,000 vehicles per day would not violate the CO standard. Therefore, as the intersection volume falls far short of 100,000 vehicles per day, no CO "hot spot" modeling was performed and no significant long-term air quality impact is anticipated to local air quality with the on-going use of the proposed project. Local Air Quality Impacts from On-Site Operations Project-related air emissions from on-site sources such as architectural coatings, landscaping equipment, on-site usage of natural gas appliances as well as the operation of vehicles on-site may have the potential to exceed the State and Federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the South Coast Air Basin. The nearest sensitive receptors that may be impacted by the proposed project are the existing single-family residential uses located approximately 1,542 feet (~470 meters) to the southeast of the project site. The local air quality emissions from on-site operations were analyzed according to the methodology described in Localized Significance Threshold Methodology, prepared by SCAQMD, revised July 2008. The Look-up Tables were developed by the SCAQMD in order to readily determine if the daily emissions of CO, NOx, PM10, and PM2.5 from the proposed project could result in a significant impact to the local air quality. Per SCAQMD staff, the 5-acre Look-up Table, which is the largest site available, can be used as a conservative screening analysis for on-site operational emissions to determine whether more-detailed dispersion modeling would be necessary. The proposed project was analyzed based on the Central San Bernardino Valley source receptor area (SRA) 34 and, as the site is approximately 1.96 acres, to be conservative, used the thresholds for a one-acre project site. Table 11 shows the on-site emissions from the CalEEMod model that includes natural gas usage, landscape maintenance equipment, and vehicles operating on-site and the calculated emissions thresholds. Per LST methodology, mobile emissions include only on-site sources which equate to approximately 10 percent of the project-related new mobile sources.¹⁸ The data provided in Table 11 shows that the on-going operations of the proposed project would not exceed SCAQMD local operational thresholds of significance discussed above. Therefore, the on-going operations of the proposed project would create a less than significant operations-related impact to local air quality due to on-site emissions and no mitigation would be required. #### **Operations-Related Health Impacts** ¹⁸ The project site is approximately 0.13 miles in length at its longest point; therefore the on-site mobile source emissions represent approximately 1/40th of the shortest CalEEMod default distance of 5.25 miles. Therefore, to be conservative, 1/10th the distance (dividing the mobile source emissions by 10) was used to represent the portion of the overall mobile source emissions that would occur on-site 17 ¹⁷ Metropolitan Transportation Authority, 2004 Congestion Management Plan for Los Angeles County, Adopted July 22, 2004. Regarding health effects related to criteria pollutant emissions, the applicable significance thresholds are established for regional compliance with the state and federal ambient air quality standards, which are intended to protect public health from both acute and long-term health impacts, depending on the potential effects of the pollutant. Because regional and local emissions of criteria pollutants during operation of the project would be below the applicable thresholds, it would not contribute to long-term health impacts related to nonattainment of the ambient air quality standards. Furthermore, the closest sensitive receptor is located well over 1,000 feet from the project boundaries and per CARB guidance, would not be significantly impacted by project-related operational toxic air contaminants. Therefore, significant adverse acute health impacts as a result of project operation are not anticipated. ## **Operations-Related Odor Impacts** Potential sources that may emit odors during the on-going operations of the proposed project would include odor emissions from the intermittent diesel delivery truck emissions and trash storage areas. Due to the distance of the nearest receptors from the project site and through compliance with SCAQMD's Rule 402 no significant impact related to odors would occur during the on-going operations of the proposed project. ¹⁹ CARB. 2005. Air Quality and Land Use Handbook: A Community Health Perspective. Table 1-1, Recommendations on Siting New Sensitive Land Uses Such As Residences, Schools, Daycare Centers, Playgrounds, or Medical Facilities _ Table 9 CalEEMod Revised Vehicle Mix Parameters | | | CalEEMod Default Mix ¹ | | CalEEMod Revised Mix ² | | |-------------------------------------|--------------------------------------|-----------------------------------|-----------------------|-----------------------------------|-----------------------| | CalEEMod Vehicle Type | Vehicle Mix from
Traffic Analysis | Ratio | Number of
Vehicles | Ratio | Number of
Vehicles | | Light Auto | Automobile | 0.502 | 66 | 0.428 | 56 | | Light Truck < 3750 lbs | Automobile | 0.041 | 5 | 0.035 | 5 | | Light Truck 3751-5750 lbs | Automobile | 0.204 | 27 | 0.174 | 23 | | Med Truck 5751-8500 lbs | Automobile | 0.154 | 20 | 0.131 | 17 | | Lite-Heavy Truck 8501-10,000 lbs | 2-Axle Truck | 0.029 | 4 | 0.000 | 0 | | Lite-Heavy Truck 10,001-14,000 lbs | 2-Axle Truck | 0.008 | 1 | 0.000 | 0 | | Med-Heavy Truck 14,001-33,000 lbs | 3-Axle Truck | 0.017 | 2 | 0.000 | 0 | | Heavy-Heavy Truck 33,001-60,000 lbs | 4+-Axle Truck | 0.018 | 2 | 0.214 | 28 | | Other Bus | | 0.001 | 0 | 0.000 | 0 | | Urban Bus | | 0.000 | 0 | 0.000 | 0 | | Motorcycle | Automobile | 0.021 | 3 | 0.018 | 2 | | School Bus | | 0.001 | 0 | 0.000 | 0 | | Motor Home | | 0.005 | 1 | 0.000 | 0 | | Total | | 1.0 | 131 | 1.0 | 131 | ⁽¹⁾ Source: CalEEMod Version 2022.1.1.24 default values for Opening year of 2025. ⁽²⁾ Revised per the Trip Generation Methodology 1 vehicle mix provided in the Stonehurst Truck Storage Trip Generation Memo (TJW Engineering, Inc., May 15, 2024) of 78.6% Autos, 0% 2-Axle Trucks, 0% 3-Axle Trucks and 21.4% 4+ Axle Trucks. # Table 10 Regional Operational Pollutant Emissions | | Pollutant Emissions (pounds/day) | | | | | | |-------------------------|----------------------------------|------|------|------|------|-------| | Activity | ROG | NOx | CO | SO2 | PM10 | PM2.5 | | Maximum Daily Emissions | 0.53 | 2.61 | 7.57 | 0.03 | 1.82 | 0.49 | | SCAQMD Thresholds | 55 | 55 | 550 | 150 | 150 | 55 | | Exceeds Threshold? | No | No | No | No | No | No | Notes: Source: CalEEMod Version 2022.1.1.24; the higher of either summer or winter emissions. Table 11 Local Operational Emissions at the Nearest Receptors | | On-Site Pollutant Emissions (pounds/day) ¹ | | | | | |--------------------------------|---|-------|------|-------|--| | On-Site Emission Source | NOx | CO | PM10 | PM2.5 | | | Area Sources ² | 0.01 | 0.05 | 0.01 | 0.01 | | | Energy Usage ³ | 0.01 | 0.01 | 0.01 | 0.01 | | | Vehicle Emissions ⁴ | 0.26 | 0.75 | 0.18 | 0.05 | | | Total Emissions | 0.27 | 0.81 | 0.19 | 0.06 | | | SCAQMD Thresholds ⁵ | 334 | 5,356 | 18 | 6 | | | Exceeds Threshold? | No | No | No | No | | - (1) Source: Calculated from CalEEMod and SCAQMD's Mass Rate Look-up Tables for 1 acre, to be conservative, in SRA 34. - (2) Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment. - (3) Energy usage consists of emissions from on-site natural gas usage. - (4) On-site vehicular emissions based on 1/10 of the gross vehicular emissions and road dust. - (5) The nearest sensitive receptors are the existing single-family residential uses located approximately 1,542 feet (~470 meters) to the southeast of the project site; therefore, to be conservative, the 200 meter threshold was used. ## **CUMULATIVE AIR QUALITY IMPACTS** There are a number of cumulative projects in the project area that have not yet been built or are currently under construction. Since the timing or sequencing of the cumulative projects is unknown, any quantitative analysis to ascertain daily construction emissions that assumes multiple, concurrent construction projects would be speculative. Further, cumulative projects include local development as well as general growth within the project area. However, as with most
development, the greatest source of emissions is from mobile sources, which travel well out of the local area. Therefore, from an air quality standpoint, the cumulative analysis would extend beyond any local projects and when wind patterns are considered would cover an even larger area. The SCAQMD recommends using two different methodologies: (1) that project-specific air quality impacts be used to determine the potential cumulative impacts to regional air quality;²⁰ and (2) that a project's consistency with the current AQMP be used to determine its potential cumulative impacts. ## **Project Specific Impacts** The project area is out of attainment for ozone, PM10, and PM2.5. Construction and operation of cumulative projects will further degrade the local air quality, as well as the air quality of the South Coast Air Basin. The greatest cumulative impact on the quality of regional air cell will be the incremental addition of pollutants mainly from increased traffic volumes from residential, commercial, and industrial development and the use of heavy equipment and trucks associated with the construction of these projects. Air quality will be temporarily degraded during construction activities that occur separately or simultaneously. However, in accordance with the SCAQMD methodology, projects that do not exceed the SCAQMD criteria or can be mitigated to less than criteria levels are not significant and do not add to the overall cumulative impact. This applies to TACs as well, as the SCAQMD does not have any cumulative TAC thresholds; therefore, projects that do not exceed the SCAQMD TAC threshold criteria or can be mitigated to less than criteria levels are not significant and do not add to the overall cumulative impact. A significant impact may occur if a project would add a cumulatively considerable contribution of a federal or state non-attainment pollutant. Project operations would generate emissions of NOx, ROG, CO, PM10, and PM2.5, which, would not exceed the SCAQMD regional or local thresholds and would not be expected to result in ground level concentrations that exceed the NAAQS or CAAQS. The project will not be a source of significant TACs and will not cause significant cancer or non-cancer-related health risks. Since the project would not introduce any substantial stationary sources of emissions, CO is the benchmark pollutant for assessing local area air quality impacts from post-construction motor vehicle operations. As indicated earlier, no violations of the state and federal CO standards are projected to occur for the project, based on the magnitude of traffic the project is anticipated to create. Therefore, operation of the project would not result in a cumulatively considerable net increase for non-attainment of criteria pollutants or ozone precursors, or TACs. As a result, the project would result in a less than significant cumulative impact for operational emissions. ## Air Quality Compliance The California Environmental Quality Act (CEQA) requires a discussion of any inconsistencies between a proposed project and applicable General Plans and Regional Plans (CEQA Guidelines Section 15125). The regional plan that applies to the proposed project includes the SCAQMD Air Quality Management Plan (AQMP). Therefore, this section discusses any potential inconsistencies of the proposed project with the AQMP. The purpose of this discussion is to set forth the issues regarding consistency with the assumptions and objectives of the AQMP and discuss whether the proposed project would interfere with the region's ability to ²⁰ South Coast Air Quality Management District, Potential Control Strategies to Address Cumulative Impacts from Air Pollution White Paper, 1993, http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook. _ comply with Federal and State air quality standards. If the decision-makers determine that the proposed project is inconsistent, the lead agency may consider project modifications or inclusion of mitigation to eliminate the inconsistency. The SCAQMD CEQA Handbook states that "New or amended General Plan Elements (including land use zoning and density amendments), Specific Plans, and significant projects must be analyzed for consistency with the AQMP". Strict consistency with all aspects of the plan is usually not required. A proposed project should be considered to be consistent with the AQMP if it furthers one or more policies and does not obstruct other policies. The SCAQMD CEQA Handbook identifies two key indicators of consistency: - (1) Whether the project will result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations, or delay timely attainment of air quality standards or the interim emission reductions specified in the AQMP. - (2) Whether the project will exceed the assumptions in the AQMP in 2022 or increments based on the year of project buildout and phase. Both of these criteria are evaluated in the following sections. Criteria 1 – Increase in the Frequency or Severity of Violations Based on the air quality modeling analysis contained in this Air Analysis, short-term construction impacts will not result in significant impacts based on the SCAQMD regional and local thresholds of significance. This Air Analysis also found that, long-term operations impacts will not result in significant impacts based on the SCAQMD local and regional thresholds of significance. Therefore, the proposed project is not projected to contribute to the exceedance of any air pollutant concentration standards and is found to be consistent with the AQMP for the first criterion. Criteria 2 – Exceed Assumptions in the AQMP? Consistency with the AQMP assumptions is determined by performing an analysis of the proposed project with the assumptions in the AQMP. The emphasis of this criterion is to ensure that the analyses conducted for the proposed project are based on the same forecasts as the AQMP. The 2020-2045 Regional Transportation/Sustainable Communities Strategy prepared by SCAG (2020) includes chapters on: the challenges in a changing region, creating a plan for our future, and the road to greater mobility and sustainable growth. These chapters currently respond directly to federal and state requirements placed on SCAG. Local governments are required to use these as the basis of their plans for purposes of consistency with applicable regional plans under CEQA. For this project, the City of Rialto Land Use Plan defines the assumptions that are represented in the AQMP. The project site has a Land Use and Zoning Designation in the Rialto Airport Specific Plan of General Manufacturing (I-GM). The project proposes to develop the site with a truck storage use with 28 passenger vehicle spaces and 57 truck docking spaces. Therefore, the proposed project is consistent with the City's land use designation. The proposed project is not anticipated to exceed the AQMP assumptions for the project site and is found to be consistent with the AQMP for the second criterion. Based on the above, the proposed project will not result in an inconsistency with the SCAQMD AQMP. Therefore, a less than significant impact will occur. ## 3. GLOBAL CLIMATE CHANGE ANALYSIS #### **EXISTING GREENHOUSE GAS ENVIRONMENT** Constituent gases of the Earth's atmosphere, called atmospheric greenhouse gases (GHG), play a critical role in the Earth's radiation amount by trapping infrared radiation emitted from the Earth's surface, which otherwise would have escaped to space. Prominent greenhouse gases contributing to this process include carbon dioxide (CO₂), methane (CH₄), ozone, water vapor, nitrous oxide (N₂O), and chlorofluorocarbons (CFCs). This phenomenon, known as the Greenhouse Effect, is responsible for maintaining a habitable climate. Anthropogenic (caused or produced by humans) emissions of these greenhouse gases in excess of natural ambient concentrations are responsible for the enhancement of the Greenhouse Effect and have led to a trend of unnatural warming of the Earth's natural climate, known as global warming or climate change. Emissions of gases that induce global warming are attributable to human activities associated with industrial/manufacturing, agriculture, utilities, transportation, and residential land uses. Transportation is responsible for 41 percent of the State's greenhouse gas emissions, followed by electricity generation. Emissions of CO₂ and nitrous oxide (NOx) are byproducts of fossil fuel combustion. Methane, a potent greenhouse gas, results from off-gassing associated with agricultural practices and landfills. Sinks of CO₂, where CO₂ is stored outside of the atmosphere, include uptake by vegetation and dissolution into the ocean. The following provides a description of each of the greenhouse gases and their global warming potential. ## Water Vapor Water vapor is the most abundant, important, and variable GHG in the atmosphere. Water vapor is not considered a pollutant; in the atmosphere it maintains a climate necessary for life. Changes in its concentration are primarily considered a result of climate feedbacks related to the warming of the atmosphere rather than a direct result of industrialization. The feedback loop in which water is involved is critically important to projecting future climate change. As the temperature of the atmosphere rises, more water is evaporated from ground storage (rivers, oceans, reservoirs, soil). Because the air is warmer, the relative humidity can be higher (in essence, the air is able to "hold" more water when it is warmer), leading to more water vapor in the atmosphere. As a GHG, the higher concentration of water vapor is then able to absorb more thermal indirect energy radiated from the Earth, thus further warming the atmosphere. The warmer atmosphere can then hold more water vapor and so on and so on. This is
referred to as a "positive feedback loop". The extent to which this positive feedback loop will continue is unknown as there is also dynamics that put the positive feedback loop in check. As an example, when water vapor increases in the atmosphere, more of it will eventually also condense into clouds, which are more able to reflect incoming solar radiation (thus allowing less energy to reach the Earth's surface and heat it up). ## Carbon Dioxide (CO₂) The natural production and absorption of CO_2 is achieved through the terrestrial biosphere and the ocean. However, humankind has altered the natural carbon cycle by burning coal, oil, natural gas, and wood. Since the industrial revolution began in the mid-1700s. Each of these activities has increased in scale and distribution. CO_2 was the first GHG demonstrated to be increasing in atmospheric concentration with the first conclusive measurements being made in the last half of the 20th century. Prior to the industrial revolution, concentrations were fairly stable at 280 parts per million (ppm). The International Panel on Climate Change (IPCC Fifth Assessment Report, 2014) Emissions of CO_2 from fossil fuel combustion and industrial processes contributed about 78% of the total GHG emissions increase from 1970 to 2010, with a similar percentage contribution for the increase during the period 2000 to 2010. Globally, economic and population growth continued to be the most important drivers of increases in CO_2 emissions from fossil fuel combustion. The contribution of population growth between 2000 and 2010 remained roughly identical to the previous three decades, while the contribution of economic growth has risen sharply. ## Methane (CH₄) CH_4 is an extremely effective absorber of radiation, although its atmospheric concentration is less than that of CO_2 . Its lifetime in the atmosphere is brief (10 to 12 years), compared to some other GHGs (such as CO_2 , N_2O , and Chlorofluorocarbons (CFCs). CH_4 has both natural and anthropogenic sources. It is released as part of the biological processes in low oxygen environments, such as in swamplands or in rice production (at the roots of the plants). Over the last 50 years, human activities such as growing rice, raising cattle, using natural gas, and mining coal have added to the atmospheric concentration of methane. Other anthropocentric sources include fossil-fuel combustion and biomass burning. ## Nitrous Oxide (N₂O) Concentrations of N_2O also began to rise at the beginning of the industrial revolution. In 1998, the global concentration of this GHG was documented at 314 parts per billion (ppb). N_2O is produced by microbial processes in soil and water, including those reactions which occur in fertilizer containing nitrogen. In addition to agricultural sources, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid production, and vehicle emissions) also contribute to its atmospheric load. It is also commonly used as an aerosol spray propellant, (i.e., in whipped cream bottles, in potato chip bags to keep chips fresh, and in rocket engines and in race cars). ## **Chlorofluorocarbons (CFC)** CFCs are gases formed synthetically by replacing all hydrogen atoms in methane or ethane (C_2H_6) with chlorine and/or fluorine atoms. CFCs are nontoxic, nonflammable, insoluble, and chemically unreactive in the troposphere (the level of air at the Earth's surface). CFCs have no natural source, but were first synthesized in 1928. It was used for refrigerants, aerosol propellants, and cleaning solvents. Due to the discovery that they are able to destroy stratospheric ozone, a global effort to halt their production was undertaken and in 1989 the European Community agreed to ban CFCs by 2000 and subsequent treaties banned CFCs worldwide by 2010. This effort was extremely successful, and the levels of the major CFCs are now remaining level or declining. However, their long atmospheric lifetimes mean that some of the CFCs will remain in the atmosphere for over 100 years. ## **Hydrofluorocarbons (HFC)** HFCs are synthetic man-made chemicals that are used as a substitute for CFCs. Out of all the GHGs, they are one of three groups with the highest global warming potential. The HFCs with the largest measured atmospheric abundances are (in order), HFC-23 (CHF₃), HFC-134a (CF₃CH₂F), and HFC-152a (CH₃CHF₂). Prior to 1990, the only significant emissions were HFC-23. HFC-134a use is increasing due to its use as a refrigerant. Concentrations of HFC-23 and HFC-134a in the atmosphere are now about 10 parts per trillion (ppt) each. Concentrations of HFC-152a are about 1 ppt. HFCs are manmade for applications such as automobile air conditioners and refrigerants. ## Perfluorocarbons (PFC) PFCs have stable molecular structures and do not break down through the chemical processes in the lower atmosphere. High-energy ultraviolet rays about 60 kilometers above Earth's surface are able to destroy the compounds. Because of this, PFCs have very long lifetimes, between 10,000 and 50,000 years. Two common PFCs are tetrafluoromethane (C_{14}) and hexafluoroethane ($C_{2}F_{6}$). Concentrations of C_{14} in the atmosphere are over 70 ppt. The two main sources of PFCs are primary aluminum production and semiconductor manufacturing. ## Sulfur Hexafluoride (SF₆) SF_6 is an inorganic, odorless, colorless, nontoxic, nonflammable gas. SF_6 has the highest global warming potential of any gas evaluated; 23,900 times that of CO_2 . Concentrations in the 1990s were about 4 ppt. Sulfur hexafluoride is used for insulation in electric power transmission and distribution equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas for leak detection. #### **Aerosols** Aerosols are particles emitted into the air through burning biomass (plant material) and fossil fuels. Aerosols can warm the atmosphere by absorbing and emitting heat and can cool the atmosphere by reflecting light. Cloud formation can also be affected by aerosols. Sulfate aerosols are emitted when fuel containing sulfur is burned. Black carbon (or soot) is emitted during biomass burning due to the incomplete combustion of fossil fuels. Particulate matter regulation has been lowering aerosol concentrations in the United States; however, global concentrations are likely increasing. ## **Global Warming Potential** The Global Warming Potential (GWP) was developed to allow comparisons of the global warming impacts of different gases. Specifically, it is a measure of how much energy the emissions of 1 ton of a gas will absorb over a given period of time, relative to the emissions of 1 ton of carbon dioxide (CO₂). The larger the GWP, the more that a given gas warms the Earth compared to CO₂ over that time period. The time period usually used for GWPs is 100 years. GWPs provide a common unit of measure, which allows analysts to add up emissions estimates of different gases (e.g., to compile a national GHG inventory), and allows policymakers to compare emissions reduction opportunities across sectors and gases. A summary of the atmospheric lifetime and the global warming potential of selected gases are summarized in Table 12. As shown in Table 12, the global warming potential of GHGs ranges from 1 to 22,800. Table 12 Global Warming Potentials and Atmospheric Lifetimes | Gas | Atmospheric Lifetime | Global Warming Potential ¹
(100 Year Horizon) | |---|----------------------|---| | Carbon Dioxide (CO ₂) | _2 | 1 | | Methane (CH ₄) | 12 | 28-36 | | Nitrous Oxide (NO) | 114 | 298 | | Hydrofluorocarbons (HFCs) | 1-270 | 12-14,800 | | Perfluorocarbons (PFCs) | 2,600-50,000 | 7,390-12,200 | | Nitrogen trifluoride (NF ₃) | 740 | 17,200 | | Sulfur Hexafluoride (SF ₆) | 3,200 | 22,800 | Source: http://www3.epa.gov/climatechange/ghgemissions/gases.html - (1) Compared to the same quantity of CO₂ emissions. - (2) Carbon dioxide's lifetime is poorly defined because the gas is not destroyed over time, but instead moves among different parts of the ocean-atmosphere-land system. Some of the excess carbon dioxide will be absorbed quickly (for example, by the ocean surface), but some will remain in the atmosphere for thousands of years, due in part to the very slow process by which carbon is transferred to ocean sediments. ## **GREENHOUSE GAS STANDARDS AND REGULATION** #### International #### Montreal Protocol In 1988, the United Nations established the Intergovernmental Panel on Climate Change (IPCC) to evaluate the impacts of global climate change and to develop strategies that nations could implement to curtail global climate change. In 1992, the United States joined other countries around the world in signing the United Nations' Framework Convention on Climate Change (UNFCCC) agreement with the goal of controlling GHG emissions. As a result, the Climate Change Action Plan was developed to address the reduction of GHGs in the United States. The plan consists of more than 50 voluntary programs. Additionally, the Montreal Protocol was originally signed in 1987 and substantially amended in 1990 and 1992. The Montreal Protocol stipulates that the production and consumption of compounds that deplete ozone in the stratosphere—CFCs, halons, carbon tetrachloride, and methyl chloroform—were to be phased out, with the first three by the year 2000 and methyl chloroform by 2005. ## The Paris Agreement The Paris Agreement became effective on November 4, 2016. Thirty days after this date at least 55 Parties to the United Nations Framework Convention on Climate Change (Convention), accounting in total for at least an estimated 55 % of the total global greenhouse gas emissions, had deposited their instruments of ratification, acceptance, approval or accession with the Depositary. The Paris Agreement built upon the Convention and – for the first
time – attempted to bring all nations into a common cause to undertake ambitious efforts to combat climate change and adapt to its effects, with enhanced support to assist developing countries to do so. As such, it charts a new course in the global climate effort. The Paris Agreement's central aim is to strengthen the global response to the threat of climate change by keeping a global temperature rise this century well below 2 degrees Celsius above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 degrees Celsius. Additionally, the agreement aims to strengthen the ability of countries to deal with the impacts of climate change. To reach these ambitious goals, appropriate financial flows, a new technology framework and an enhanced capacity building framework will be put in place, thus supporting action by developing countries and the most vulnerable countries, in line with their own national objectives. The Agreement also provides for enhanced transparency of action and support through a more robust transparency framework. ## **Federal** The United States Environmental Protection Agency (EPA) is responsible for implementing federal policy to address GHGs. The federal government administers a wide array of public-private partnerships to reduce the GHG intensity generated in the United States. These programs focus on energy efficiency, renewable energy, methane and other non-CO2 gases, agricultural practices, and implementation of technologies to achieve GHG reductions. The EPA implements numerous voluntary programs that contribute to the reduction of GHG emissions. These programs (e.g., the ENERGY STAR labeling system for energy-efficient products) play a significant role in encouraging voluntary reductions from large corporations, consumers, industrial and commercial buildings, and many major industrial sectors. In Massachusetts v. Environmental Protection Agency (Docket No. 05–1120), argued November 29, 2006 and decided April 2, 2007, the U.S. Supreme Court held that not only did the EPA have authority to regulate greenhouse gases, but the EPA's reasons for not regulating this area did not fit the statutory requirements. As such, the U.S. Supreme Court ruled that the EPA should be required to regulate CO₂ and other greenhouse gases as pollutants under the federal Clean Air Act (CAA). In response to the FY2008 Consolidations Appropriations Act (H.R. 2764; Public Law 110-161), EPA proposed a rule on March 10, 2009 that requires mandatory reporting of GHG emissions from large sources in the United States. On September 22, 2009, the Final Mandatory Reporting of GHG Rule was signed and published in the Federal Register on October 30, 2009. The rule became effective on December 29, 2009. This rule requires suppliers of fossil fuels or industrial GHGs, manufacturers of vehicles and engines, and facilities that emit 25,000 metric tons or more per year of GHG emissions to submit annual reports to EPA. On December 7, 2009, the EPA Administrator signed two distinct findings under section 202(a) of the Clean Air Act. One is an endangerment finding that finds concentrations of the six GHGs in the atmosphere threaten the public health and welfare of current and future generations. The other is a cause or contribute finding, that finds emissions from new motor vehicles and new motor vehicle engines contribute to the GHG pollution which threatens public health and welfare. These actions will not themselves impose any requirements on industry or other entities. However, it is a prerequisite to finalizing the EPA's proposed GHG emission standards for light-duty vehicles, which were jointly proposed by the EPA and Department of Transportation on September 15, 2009. #### Clean Air Act In Massachusetts v. Environmental Protection Agency (Docket No. 05–1120), the U.S. Supreme Court held in April of 2007 that the EPA has statutory authority under Section 202 of the federal Clean Air Act (CAA) to regulate GHGs. The court did not hold that the EPA was required to regulate GHG emissions; however, it indicated that the agency must decide whether GHGs cause or contribute to air pollution that is reasonably anticipated to endanger public health or welfare. On December 7, 2009, the EPA Administrator signed two distinct findings regarding GHGs under Section 202(a) of the CAA. The EPA adopted a Final Endangerment Finding for the six defined GHGs (CO2, CH4, N2O, HFCs, PFCs, and SF6) on December 7, 2009. The Endangerment Finding is required before EPA can regulate GHG emissions under Section 202(a)(1) of the CAA consistently with the United States Supreme Court decision. The EPA also adopted a Cause or Contribute Finding in which the EPA Administrator found that GHG emissions from new motor vehicle and motor vehicle engines are contributing to air pollution, which is endangering public health and welfare. These findings do not, by themselves, impose any requirements on industry or other entities. However, these actions were a prerequisite for implementing GHG emissions standards for vehicles. #### Energy Independence Security Act The Energy Independence and Security Act of 2007 (EISA) facilitates the reduction of national GHG emissions by requiring the following: - Increasing the supply of alternative fuel sources by setting a mandatory Renewable Fuel Standard (RFS) that requires fuel producers to use at least 36 billion gallons of biofuel in 2022; - Prescribing or revising standards affecting regional efficiency for heating and cooling products, procedures for new or amended standards, energy conservation, energy efficiency labeling for consumer electronic products, residential boiler efficiency, electric motor efficiency, and home appliances; - Requiring approximately 25 percent greater efficiency for light bulbs by phasing out incandescent light bulbs between 2012 and 2014; requiring approximately 200 percent greater efficiency for light bulbs, or similar energy savings, by 2020; and - While superseded by the EPA and NHTSA actions described above, (i) establishing miles per gallon targets for cars and light trucks and (ii) directing the NHTSA to establish a fuel economy program for medium- and heavy-duty trucks and create a separate fuel economy standard for trucks. Additional provisions of EISA address energy savings in government and public institutions, promote research for alternative energy, additional research in carbon capture, international energy programs, and the creation of green jobs.²¹ ## Executive Order 13432 In response to the Massachusetts v. Environmental Protection Agency ruling, the President signed Executive Order 13432 on May 14, 2007, directing the EPA, along with the Departments of Transportation, Energy, and Agriculture, to initiate a regulatory process that responds to the Supreme Court's decision. Executive Order 13432 was codified into law by the 2009 Omnibus Appropriations Law signed on February 17, 2009. The order sets goals in the areas of energy efficiency, acquisition, renewable energy, toxics reductions, recycling, sustainable buildings, electronics stewardship, fleets, and water conservation. Light-Duty Vehicle Greenhouse Gas and Corporate Average Fuel Economy Standards. On May 19, 2009, President Obama announced a national policy for fuel efficiency and emissions standards in the United States auto industry. The adopted federal standard applies to passenger cars and light-duty trucks for model years 2012 through 2016. The rule surpasses the prior Corporate Average Fuel Economy standards (CAFE)²² and requires an average fuel economy standard of 35.5 miles per gallon (mpg) and 250 grams of CO2 per mile by model year 2016, based on USEPA calculation methods. These standards were formally adopted on April 1, 2010. In August 2012, standards were adopted for model year 2017 through 2025 for passenger cars and light-duty trucks. By 2025, vehicles are required to achieve 54.5 mpg (if GHG reductions are achieved exclusively through fuel economy improvements) and 163 grams of CO2 per mile. According to the USEPA, a model year 2025 vehicle would emit one-half of the GHG emissions from a model year 2010 vehicle.²³ In 2017, the USEPA recommended no change to the GHG standards for light-duty vehicles for model years 2022-2025. In December 2021, the EPA finalized federal GHG emissions standards for passenger cars and light trucks for model years 2023 through 2026. The updated standards will result in avoiding more than 3 billion tons of GHG emissions through 2050. These standards set the light-duty vehicle GHG program on track to provide a strong launch point for the agency's next phase of standards for model year 2027 and beyond.²⁴ On April 12, 2023, EPA announced new, more ambitious proposed standards to further reduce harmful air pollutant emissions from light-duty and medium-duty vehicles starting with model year 2027. The proposal builds upon EPA's final standards for federal greenhouse gas emissions standards for passenger cars and light trucks for model years 2023 through 2026 and leverages advances in clean car technology to unlock benefits to Americans ranging from reducing climate pollution, to improving public health, to saving drivers money through reduced fuel and maintenance costs. The proposed standards would phase in over model years 2027 through 2032.²⁵ Issued by NHTSA and EPA in March 2020 (published on April 30, 2020 and effective after June 29, 2020), the Safer Affordable Fuel-Efficient Vehicles Rule would maintain the CAFE and CO2 standards applicable in 49 ²¹ A green job, as defined by the United States Department of Labor, is a job in business that produces goods or provides services that benefit the environment or conserve natural resources. ²² The Corporate Average Fuel Economy standards are regulations in the United States, first enacted by Congress in 1975, to improve the average fuel economy of cars and light trucks. The U.S Department of
Transportation has delegated the National Highway Traffic Safety Administration as the regulatory agency for the Corporate Average Fuel Economy standards. ²³ United States Environmental Protection Agency, EPA and NHTSA Set Standards to Reduce Greenhouse Gases and Improve Fuel Economy for Model Years 2017-2025 Cars and Light Trucks, August 2012, https://nepis.epa.gov/Exe/ZyPDF.cgi/P100EZ7C.PDF?Dockey=P100EZ7C.PDF. ²⁴ United States Environmental Protection Agency (EPA), Regulations for Emissions from Vehicles and Engines, Final Rule to Revise Existing National GHG Emissions Standards for Passenger Cars and Light Trucks Through Model Year 2026. https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-revise-existing-national-ghg-emissions ²⁵ United States Environmental Protection Agency (EPA), Regulations for Emissions from Vehicles and Engines, Proposed Rule: Multi-Pollutant Emissions Standards for Model Years 2027 and Later Light-Duty and Medium-Duty Vehicles. https://www.epa.gov/regulations-emissions-vehicles-and-engines/proposed-rule-multi-pollutant-emissions-standards-model model year 2020 for model years 2021 through 2026. The estimated CAFE and CO2 standards for model year 2020 are 43.7 mpg and 204 grams of CO2 per mile for passenger cars and 31.3 mpg and 284 grams of CO2 per mile for light trucks, projecting an overall industry average of 37 mpg, as compared to 46.7 mpg under the standards issued in 2012. This Rule also excludes CO2- equivalent emission improvements associated with air conditioning refrigerants and leakage (and, optionally, offsets for nitrous oxide and methane emissions) after model year 2020.²⁶ On May 12, 2021, the National Highway Traffic Safety Administration (NHTSA) published a notice of proposed rulemaking in the Federal Register, proposing to repeal "The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule Part One: One National Program," published Sept. 27, 2019 (SAFE I Rule), in which NHTSA codified regulatory text and made additional pronouncements regarding the preemption of state and local laws related to fuel economy standards. Specifically, this document proposed to fully repeal the regulatory text and appendices promulgated in the SAFE I Rule. In addition, this document proposed to repeal and withdraw the interpretative statements made by the Agency in the SAFE I Rule preamble, including those regarding the preemption of particular state Greenhouse Gas (GHG) Emissions standards or Zero Emissions Vehicle (ZEV) mandates. As such, this document proposed to establish a clean slate with respect to NHTSA's regulations and interpretations concerning preemption under the Energy Policy and Conservation Act (EPCA).²⁷ This action is effective as of January 28, 2022.²⁸ ## **State of California** California Air Resources Board CARB, a part of the California Environmental Protection Agency (CalEPA), is responsible for the coordination and administration of both federal and state air pollution control programs within California. In this capacity, CARB conducts research, sets state ambient air quality standards (California Ambient Air Quality Standards [CAAQS]), compiles emission inventories, develops suggested control measures, and provides oversight of local programs. CARB establishes emissions standards for motor vehicles sold in California, consumer products (such as hairspray, aerosol paints, and barbecue lighter fluid), and various types of commercial equipment. It also sets fuel specifications to further reduce vehicular emissions. In 2004, the CARB adopted an Airborne Toxic Control Measure to limit heavy-duty diesel motor vehicle idling in order to reduce public exposure to DPM and other TACs (Title 13 California Code of Regulations [CCR], Section 2485). The measure applies to diesel-fueled commercial vehicles with gross vehicle weight ratings greater than 10,000 pounds that are licensed to operate on highways, regardless of where they are registered. This measure generally does not allow diesel-fueled commercial vehicles to idle for more than 5 minutes at any given location with certain exemptions for equipment in which idling is a necessary function such as concrete trucks. While this measure primarily targets diesel particulate matter emissions, it has co-benefits of minimizing GHG emissions from unnecessary truck idling. In 2008, CARB approved the Truck and Bus regulation to reduce particulate matter and nitrogen oxide emissions from existing diesel vehicles operating in California (13 CCR, Section 2025, subsection (h)). CARB has also promulgated emission standards for off-road diesel construction equipment of greater than 25 horsepower such as bulldozers, loaders, backhoes and forklifts, as well as many other self-propelled off-road diesel vehicles. The regulation, adopted by the CARB on July 26, 2007, aims to reduce emissions by installation of diesel soot filters and encouraging the retirement, replacement, or repower of older, dirtier engines with newer emission-controlled models. Refer to Section IV.B, Air Quality, of this Draft EIR for additional details ²⁸ https://www.federalregister.gov/documents/2021/05/12/2021-08758/corporate-average-fuel-economy-cafe-preemption 26 National Highway Traffic Safety Administration (NHTSA) and U.S. Environmental Protection Agency (USEPA), 2018. Federal Register / Vol. 83, No. 165 / Friday, August 24, 2018 / Proposed Rules, The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021–2026 Passenger Cars and Light Trucks 2018. Available at: https://www.gpo.gov/fdsys/pkg/FR-2018-08-24/pdf/2018-16820.pdf ²⁷ https://www.federalregister.gov/documents/2021/05/12/2021-08758/corporate-average-fuel-economy-cafe-preemption regarding these regulations. While these regulations primarily target reductions in criteria air pollutant emission, they have co-benefits of minimizing GHG emissions due to improved engine efficiencies. The State currently has no regulations that establish ambient air quality standards for GHGs. However, the State has passed laws directing CARB to develop actions to reduce GHG emissions, which are listed below. #### Assembly Bill 1493 California Assembly Bill 1493 enacted on July 22, 2002, required the CARB to develop and adopt regulations that reduce GHGs emitted by passenger vehicles and light duty trucks. In 2005, the CARB submitted a "waiver" request to the EPA from a portion of the federal Clean Air Act in order to allow the State to set more stringent tailpipe emission standards for CO_2 and other GHG emissions from passenger vehicles and light duty trucks. On December 19, 2007 the EPA announced that it denied the "waiver" request. On January 21, 2009, CARB submitted a letter to the EPA administrator regarding the State's request to reconsider the waiver denial. The EPA approved the waiver on June 30, 2009. After adopting these initial greenhouse gas standards for passenger vehicles, CARB adopted continuing standards for future model years. #### Executive Order S-3-05 The California Governor issued Executive Order S-3-05, GHG Emission, in June 2005, which established the following reduction targets: - By 2010, California shall reduce GHG emissions to 2000 levels; - By 2020, California shall reduce GHG emissions to 1990 levels; and - By 2050, California shall reduce GHG emissions to 80 percent below 1990 levels. The Executive Order directed the secretary of the California Environmental Protection Agency (CalEPA) to coordinate a multi-agency effort to reduce GHG emissions to the target levels. To comply with the Executive Order, the secretary of CalEPA created the California Climate Action Team (CAT), made up of members from various state agencies and commissions. The team released its first report in March 2006. The report proposed to achieve the targets by building on the voluntary actions of businesses, local governments, and communities and through State incentive and regulatory programs. Assembly Bill 32 (California Health and Safety Code, Division 25.5 – California Global Warming Solutions Act of 2006) In 2006, the California State Legislature adopted Assembly Bill (AB) 32 (codified in the California Health and Safety Code [HSC], Division 25.5 – California Global Warming Solutions Act of 2006), which focuses on reducing GHG emissions in California to 1990 levels by 2020. HSC Division 25.5 defines GHGs as CO2, CH4, N2O, HFCs, PFCs, and SF6 and represents the first enforceable statewide program to limit emissions of these GHGs from all major industries with penalties for noncompliance. The law further requires that reduction measures be technologically feasible and cost effective. Under HSC Division 25.5, CARB has the primary responsibility for reducing GHG emissions. CARB is required to adopt rules and regulations directing state actions that would achieve GHG emissions reductions equivalent to 1990 statewide levels by 2020. ## Senate Bill 32 and Assembly Bill 197 In 2016, the California State Legislature adopted Senate Bill (SB) 32 and its companion bill AB 197, and both were signed by Governor Brown. SB 32 and AB 197 amends HSC Division 25.5 and establishes a new climate pollution reduction target of 40 percent below 1990 levels by 2030 and includes provisions to ensure the benefits of state climate policies reach into disadvantaged communities. ## 2022 Climate Change Scoping Plan CARB adopted the 2022 Scoping Plan for Achieving Carbon Neutrality on November 16, 2022. The 2022 Scoping Plan lays out the sector-by-sector roadmap for California, the world's fifth largest economy, to achieve carbon neutrality by 2045 or earlier, outlining a technologically feasible, cost-effective, and equity-focused path to achieve the state's climate target. The Plan addresses recent legislation and direction from Governor Newsom and extends and expands upon earlier plans with a target of reducing anthropogenic emissions to 85 percent below 1990 levels by 2045. The plan also takes the unprecedented
step of adding carbon neutrality as a science-based guide and touchstone for California's climate work. Specifically, this plan: - Identifies a path to keep California on track to meet its SB 32 GHG reduction target of at least 40 percent below 1990 emissions by 2030. - Identifies a technologically feasible, cost-effective path to achieve carbon neutrality by 2045 and a reduction in anthropogenic emissions by 85 percent below 1990 levels. - Focuses on strategies for reducing California's dependency on petroleum to provide consumers with clean energy options that address climate change, improve air quality, and support economic growth and clean sector jobs. - Integrates equity and protecting California's most impacted communities as driving principles throughout the document. - Incorporates the contribution of natural and working lands (NWL) to the state's GHG emissions, as well as their role in achieving carbon neutrality. - Relies on the most up-to-date science, including the need to deploy all viable tools to address the existential threat that climate change presents, including carbon capture and sequestration, as well as direct air capture. - Evaluates the substantial health and economic benefits of taking action. - Identifies key implementation actions to ensure success. ## SB 32, Pavley. California Global Warming Solutions Act of 2006 - (1) The California Global Warming Solutions Act of 2006 designates the State Air Resources Board as the state agency charged with monitoring and regulating sources of emissions of greenhouse gases. The state board is required to approve a statewide greenhouse gas emissions limit equivalent to the statewide greenhouse gas emissions level in 1990 to be achieved by 2020 and to adopt rules and regulations in an open public process to achieve the maximum, technologically feasible, and cost-effective greenhouse gas emissions reductions. This bill would require the state board to ensure that statewide greenhouse gas emissions are reduced to 40% below the 1990 level by 2030. - (2) This bill would become operative only if AB 197 of the 2015–16 Regular Session is enacted and becomes effective on or before January 1, 2017. AB 197 requires that the CARB, which directs implementation of emission-reduction programs, should target direct reductions at both stationary and mobile sources. AB 197 of the 2015-2016 Regular Session was approved on September 8, 2016. ## Senate Bill 1368 Senate Bill 1368 (SB 1368) is the companion Bill of AB 32 and was adopted September, 2006. SB 1368 requires the California Public Utilities Commission (CPUC) to establish a performance standard for baseload generation of GHG emissions by investor-owned utilities by February 1, 2007, and for local publicly owned utilities by June 30, 2007. These standards could not exceed the GHG emissions rate from a baseload combined-cycle, natural gas-fired plant. Furthermore, the legislation states that all electricity provided to the State, including imported electricity, must be generated by plants that meet the standards set by California Public Utilities Commission (CPUC) and California Energy Commission (CEC). ## Executive Order S-1-07 Executive Order S-1-07 was issued in 2007 and proclaims that the transportation sector is the main source of GHG emissions in the State, since it generates more than 40 percent of the State's GHG emissions. It establishes a goal to reduce the carbon intensity of transportation fuels sold in the State by at least ten percent by 2020. This Order also directs the CARB to determine whether this Low Carbon Fuel Standard (LCFS) could be adopted as a discrete early-action measure as part of the effort to meet the mandates in AB 32. On April 23, 2009 CARB approved the proposed regulation to implement the low carbon fuel standard and began implementation on January 1, 2011. The low carbon fuel standard is anticipated to reduce GHG emissions by about 16 MMT per year by 2020. CARB approved some amendments to the LCFS in December 2011, which were implemented on January 1, 2013. In September 2015, the Board approved the re-adoption of the LCFS, which became effective on January 1, 2016, to address procedural deficiencies in the way the original regulation was adopted. In 2018, the Board approved amendments to the regulation, which included strengthening and smoothing the carbon intensity benchmarks through 2030 in-line with California's 2030 GHG emission reduction target enacted through SB 32, adding new crediting opportunities to promote zero emission vehicle adoption, alternative jet fuel, carbon capture and sequestration, and advanced technologies to achieve deep decarbonization in the transportation sector. The LCFS is designed to encourage the use of cleaner low-carbon transportation fuels in California, encourage the production of those fuels, and therefore, reduce GHG emissions and decrease petroleum dependence in the transportation sector. Separate standards are established for gasoline and diesel fuels and the alternative fuels that can replace each. The standards are "back-loaded", with more reductions required in the last five years, than during the first five years. This schedule allows for the development of advanced fuels that are lower in carbon than today's fuels and the market penetration of plug-in hybrid electric vehicles, battery electric vehicles, fuel cell vehicles, and flexible fuel vehicles. It is anticipated that compliance with the low carbon fuel standard will be based on a combination of both lower carbon fuels and more efficient vehicles. Reformulated gasoline mixed with corn-derived ethanol at ten percent by volume and low sulfur diesel fuel represent the baseline fuels. Lower carbon fuels may be ethanol, biodiesel, renewable diesel, or blends of these fuels with gasoline or diesel as appropriate. Compressed natural gas and liquefied natural gas also may be low carbon fuels. Hydrogen and electricity, when used in fuel cells or electric vehicles are also considered as low carbon fuels for the low carbon fuel standard. #### Senate Bill 97 Senate Bill 97 (SB 97) was adopted August 2007 and acknowledges that climate change is a prominent environmental issue that requires analysis under CEQA. SB 97 directed the Governor's Office of Planning and Research (OPR), which is part of the State Natural Resources Agency, to prepare, develop, and transmit to the CARB guidelines for the feasible mitigation of GHG emissions or the effects of GHG emissions, as required by CEQA, by July 1, 2009. The Natural Resources Agency was required to certify and adopt those guidelines by January 1, 2010. Pursuant to the requirements of SB 97 as stated above, on December 30, 2009, the Natural Resources Agency adopted amendments to the state CEQA guidelines that address GHG emissions. The CEQA Guidelines Amendments changed 14 sections of the CEQA Guidelines and incorporate GHG language throughout the Guidelines. However, no GHG emissions thresholds of significance were provided and no specific mitigation measures were identified. The GHG emission reduction amendments went into effect on March 18, 2010, and are summarized below: Climate action plans and other greenhouse gas reduction plans can be used to determine whether a project has significant impacts, based upon its compliance with the plan. - Local governments are encouraged to quantify the greenhouse gas emissions of proposed projects, noting that they have the freedom to select the models and methodologies that best meet their needs and circumstances. The section also recommends consideration of several qualitative factors that may be used in the determination of significance, such as the extent to which the given project complies with state, regional, or local GHG reduction plans and policies. OPR does not set or dictate specific thresholds of significance. Consistent with existing CEQA Guidelines, OPR encourages local governments to develop and publish their own thresholds of significance for GHG impacts assessment. - When creating their own thresholds of significance, local governments may consider the thresholds of significance adopted or recommended by other public agencies, or recommended by experts. - New amendments include guidelines for determining methods to mitigate the effects of greenhouse gas emissions in Appendix F of the CEQA Guidelines. - OPR is clear to state that "to qualify as mitigation, specific measures from an existing plan must be identified and incorporated into the project; general compliance with a plan, by itself, is not mitigation". - OPR's emphasizes the advantages of analyzing GHG impacts on an institutional, programmatic level. OPR therefore approves tiering of environmental analyses and highlights some benefits of such an approach. - Environmental impact reports (EIRs) must specifically consider a project's energy use and energy efficiency potential. #### Senate Bill 100 Senate Bill 100 (SB 100) requires 100 percent of total retail sales of electricity in California to come from eligible renewable energy resources and zero-carbon resources by December 31, 2045. SB 100 was adopted September 2018. The interim thresholds from prior Senate Bills and Executive Orders would also remain in effect. These include Senate Bill 1078 (SB 1078), which requires retail sellers of electricity, including investor-owned utilities and community choice aggregators, to provide at least 20 percent of their supply from renewable sources by 2017. Senate Bill 107 (SB 107) which changed the target date to 2010. Executive Order S-14-08, which was signed on November 2008 and expanded the State's Renewable Energy Standard to 33 percent renewable energy by 2020. Executive Order S-21-09 directed the CARB to adopt regulations by July 31, 2010 to enforce S-14-08. Senate Bill X1-2 codifies the 33 percent renewable energy requirement by 2020. #### Senate Bill 375 Senate Bill 375 (SB 375) was adopted September 2008 and aligns regional
transportation planning efforts, regional GHG emission reduction targets, and land use and housing allocation. SB 375 requires Metropolitan Planning Organizations (MPO) to adopt a sustainable communities strategy (SCS) or alternate planning strategy (APS) that will prescribe land use allocation in that MPOs Regional Transportation Plan (RTP). The CARB, in consultation with each MPO, will provide each affected region with reduction targets for GHGs emitted by passenger cars and light trucks in the region for the years 2020 and 2035. These reduction targets will be updated every eight years but can be updated every four years if advancements in emissions technologies affect the reduction strategies to achieve the targets. The CARB is also charged with reviewing each MPO's sustainable communities strategy or alternate planning strategy for consistency with its assigned targets. The proposed project is located within the Southern California Association of Governments (SCAG) jurisdiction, which has authority to develop the SCS or APS. For the SCAG region, the targets set by the CARB are at eight percent below 2005 per capita GHG emissions levels by 2020 and 19 percent below 2005 per capita GHG emissions levels by 2035. These reduction targets became effective October 2018. ## Senate Bill X7-7 Senate Bill X7-7 (SB X7-7), enacted on November 9, 2009, mandates water conservation targets and efficiency improvements for urban and agricultural water suppliers. SB X7-7 requires the Department of Water Resources (DWR) to develop a task force and technical panel to develop alternative best management practices for the water sector. In addition, SB X7-7 required the DWR to develop criteria for baseline uses for residential, commercial, and industrial uses for both indoor and landscaped area uses. The DWR was also required to develop targets and regulations that achieve a statewide 20 percent reduction in water usage. Assembly Bill 939 and Senate Bill 1374 Assembly Bill 939 (AB 939) requires that each jurisdiction in California to divert at least 50 percent of its waste away from landfills, whether through waste reduction, recycling or other means. Senate Bill 1374 (SB 1374) requires the California Integrated Waste Management Board to adopt a model ordinance by March 1, 2004, suitable for adoption by any local agency to require 50 to 75 percent diversion of construction and demolition of waste materials from landfills. California Code of Regulations (CCR) Title 24, Part 6 CCR Title 24, Part 6: California's Energy Efficiency Standards for Residential and Nonresidential Buildings (Title 24) were first established in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficiency technologies and methods. Although it was not originally intended to reduce GHG emissions, electricity production by fossil fuels results in GHG emissions and energy efficient buildings require less electricity. Therefore, increased energy efficiency results in decreased GHG emissions. The 2016 residential standards were estimated to be approximately 28 percent more efficient than the 2013 standards, whereas the 2019 residential standards are estimated to be approximately 7 percent more efficient than the 2016 standards. Furthermore, once rooftop solar electricity generation is factored in, 2019 residential standards are estimated to be approximately 53 percent more efficient than the 2016 standards. Under the 2019 standards, nonresidential buildings are estimated to be approximately 30 percent more efficient than the 2016 standards. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases greenhouse gas emissions. Per Section 100 Scope, the 2019 Title 24, Part 6 Building Code now requires healthcare facilities, such as assisted living facilities, hospitals, and nursing homes, to meet documentation requirements of Title 24, Part 1 Chapter 7 – Safety Standards for Health Facilities. A healthcare facility is defined as any building or portion thereof licensed pursuant to California Health and Safety Code Division 2, Chapter 1, Section 1204 or Chapter 2, Section 1250. Section 120.1 Ventilation and Indoor Air Quality included both additions and revisions in the 2019 Code. This section now requires nonresidential and hotel/motel buildings to have air filtration systems that use forced air ducts to supply air to occupiable spaces to have air filters. Further, the air filter efficiency must be either MERV 13 or use a particle size efficiency rating specific in the Energy Code AND be equipped with air filters with a minimum 2-inch depth or minimum 1-inch depth if sized according to the equation 120.1-A. If natural ventilation is to be used the space must also use mechanical unless ventilation openings are either permanently open or controlled to stay open during occupied times. The 2019 version of the Code also completely revised the minimum ventilation requirements including DVC airflow rates within Section 120.1 Table 120.1-A. Table 120.1-A now includes air classification and recirculation limitations, these are based on either the number of occupants or the CFM/ft² (cubic feet per minute per square foot), whichever is greater. Section 120.1 Ventilation and Indoor Air Quality also included additions for high-rise residential buildings. Requirements include that mechanical systems must provide air filters that and that air filters must be MERV 13 or use a particle size efficiency rating specified in the Energy Code. Window operation is no longer a method allowed to meet ventilation requirements, continuous operation of central forced air system handlers used in central fan integrated ventilation system is not a permissible method of providing the dwelling unit ventilation airflow, and central ventilation systems that serve multiple dwelling units must be balanced to provide ventilation airflow to each dwelling unit. In addition, requirements for kitchen range hoods were also provided in the updated Section 120.1. Per Section 120.1(a) healthcare facilities must be ventilated in accordance with Chapter 4 of the California Mechanical Code and are NOT required to meet the ventilations requirements of Title 24, Part 6. Section 140.4 Space Conditioning Systems included both additions and revisions within the 2019 Code. The changes provided new requirements for cooling tower efficiency, new chilled water-cooling system requirements, as well as new formulas for calculating allowed fan power. Section 140.4(n) also provide a new exception for mechanical system shut-offs for high-rise multifamily dwelling units, while Section 140.4(o) added new requirements for conditioned supply air being delivered to space with mechanical exhaust. Section 120.6 Covered Processes added information in regards to adiabatic chiller requirements that included that all condenser fans for air-cooled converseness, evaporative-cooled condensers, adiabatic condensers, gas coolers, air or water fluid coolers or cooling towers must be continuously variable speed, with the speed of all fans serving a common condenser high side controlled in unison .Further, the mid-condensing setpoint must be 70 degrees Fahrenheit for all of the above mentioned systems. New regulations were also adopted under Section 130.1 Indoor Lighting Controls. These included new exceptions being added for restrooms, the exception for classrooms being removed, as well as exceptions in regard to sunlight provided through skylights and overhangs. Section 130.2 Outdoor Lighting Controls and Equipment added automatic scheduling controls which included that outdoor lighting power must be reduced by 50 to 90 percent, turn the lighting off during unoccupied times and have at least two scheduling options for each luminaire independent from each other and with a 2-hour override function. Furthermore, motion sensing controls must have the ability to reduce power within 15 minutes of area being vacant and be able to come back on again when occupied. An exception allows for lighting subject to a health or life safety statute, ordinance, or regulation may have a minimum time-out period longer than 15 minutes or a minimum dimming level above 50% when necessary to comply with the applicable law. The 2022 Building Energy Efficiency Standards became effective on January 1, 2023. ²⁹ The core focus of the building standards has been efficiency, but the 2019 Energy Code ventured into onsite generation by requiring solar PV on new homes, providing significant GHG savings. The 2022 update builds off this progress with expanded solar standards and the move to onsite energy storage that will help Californians save on utility bills while bolstering the grid. The 2022 Energy Code update focuses on four key areas in new construction of homes and businesses: - Encouraging electric heat pump technology and use, which consumes less energy and produces fewer emissions than traditional HVACs and water heaters. - Establishing electric-ready requirements when natural gas is installed, which positions owners to use cleaner electric heating, cooking and electric vehicle (EV) charging options whenever they choose to adopt those technologies. - Expanding solar photovoltaic (PV) system and battery storage standards to make clean energy available onsite and complement the state's progress toward a 100 percent clean electricity grid. - Strengthening ventilation standards to improve indoor air quality. ²⁹ California Energy Commission (CEC). 2022. Building Energy Efficiency Standards. https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2022-building-energy-efficiency. 2160 Stonehurst Drive Truck Yard Air Quality and Global Climate Change Impact Analysis The 2022 Energy Code affects homes by establishing energy
budgets based on efficient heat pumps for space or water heating to encourage builders to install heat pumps over gas-fueled HVAC units; requiring homes to be electric-ready, with dedicated 240-volt outlets and space (with plumbing for water heaters) so electric appliances can eventually replace installed gas appliances; increasing minimum kitchen ventilation requirements so that fans over cooktops have higher airflow or capture efficiency to better exhaust pollution from gas cooking and improve indoor air quality; and allowing exceptions to existing solar PV standards when roof area is not available (such as for smaller homes). In addition, the effect on businesses includes establishing combined solar PV and battery standards for select businesses with systems being sized to maximize onsite use of solar energy and avoid electricity demand during times when the grid must use gas-powered plants; establishing new efficiency standards for commercial greenhouses (primarily cannabis growing); and improving efficiency standards for building envelope, various internal systems, and grid integration equipment, such as demand-responsive controls to buoy grid stability.^{30,31} California Code of Regulations (CCR) Title 24, Part 11 (California Green Building Standards) On January 12, 2010, the State Building Standards Commission unanimously adopted updates to the California Green Building Standards Code, which went into effect on January 1, 2011. 2016 CALGreen Code: The 2016 residential standards were estimated to be approximately 28 percent more efficient than the 2013 standards. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases greenhouse gas emissions. During the 2016-2017 fiscal year, the Department of Housing and Community Development (HCD) updated CALGreen through the 2015 Triennial Code Adoption Cycle. HCD also increased the required construction waste reduction from 50 percent to 65 percent of the total building site waste. This increase aids in meeting CalRecycle's statewide solid waste recycling goal of 75 percent for 2020 as stated in Chapter 476, Statutes of 2011 (AB 341). HCD adopted new regulations requiring recycling areas for multifamily projects of five or more dwelling units. This regulation requires developers to provide readily accessible areas adequate in size to accommodate containers for depositing, storage and collection of non-hazardous materials (including organic waste) for recycling. This requirement assists businesses that were required as of April 1, 2016, to meet the requirements of Chapter 727, Statutes of 2014 (AB 1826). HCD adopted new regulations to require information on photovoltaic systems and electric vehicle chargers to be included in operation and maintenance manuals. Currently, CALGreen section 4.410.1 Item 2(a) requires operation and maintenance instructions for equipment and appliances. Photovoltaic systems and electric vehicle chargers are systems that play an important role in many households in California, and their importance is increasing every day. HCD incorporated these two terms in the existing language in order to provide clarity to code users as to additional systems requiring operation and maintenance instructions. HCD updated the reference to Clean Air Standards of the United States Environmental Protection Agency applicable to woodstoves and pellet stoves. HCD also adopted a new requirement for woodstoves and pellet stoves to have a permanent label indicating they are certified to meet the emission limits. This requirement provides clarity to the code user and is consistent with the United States Environmental Protection Agency's New Source Performance Standards. HCD updated the list of standards which can be used for verification of compliance for exterior grade composite wood products. This list now includes four standards from the Canadian Standards Association (CSA): CSA O121, CSA O151, CSA O153 and CSA O325. HCD updated heating and air-conditioning system design references to the ANSI/ACCA 2 Manual J, ANSI/ACCA 1 Manual D, and ANSI/ACCA 3 Manual S to the most recent versions approved by ANSI. HCD adopted a new elective measure for hot water recirculation systems for water conservation. The United States Department of Energy ³¹ State of California Energy Commission. 2022 Building Energy Efficiency Standards Summary. https://www.energy.ca.gov/sites/default/files/2021-08/CEC 2022 EnergyCodeUpdateSummary ADA.pdf 20 ³⁰ https://www.lightnowblog.com/2021/08/california-energy-commission-adopts-2022-building-energy-efficiency-standards/ estimates that 3,600 to 12,000 gallons of water per year can be saved by the typical household (with four points of hot water use) if a hot water recirculation system is installed. 2019 CALGreen Code: During the 2019-2020 fiscal year, the Department of Housing and Community Development (HCD) updated CALGreen through the 2019 Triennial Code Adoption Cycle. The 2019 version of the California Green Building Standards became effective January 1, 2020. HCD modified the best management practices for stormwater pollution prevention adding Section 5.106.2 for projects that disturb one or more acres of land. This section requires projects that disturb one acre or more of land or less than one acre of land but are part of a larger common plan of development or sale must comply with the postconstruction requirement detailed in the applicable National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges Associated with Construction and Land Disturbance Activities issued by the State Water Resources Control Board. The NPDES permits require postconstruction runoff (post-project hydrology) to match the preconstruction runoff pre-project hydrology) with installation of postconstruction stormwater management measures. HCD added sections 5.106.4.1.3 and 5.106.4.1.5 in regard to bicycle parking. Section 5.106.4.1.3 requires new buildings with tenant spaces that have 10 or more tenant-occupants, provide secure bicycle parking for 5 percent of the tenant-occupant vehicular parking spaces with a minimum of one bicycle parking facility. In addition, Section 5.106.4.1.5 states that acceptable bicycle parking facility for Sections 5.106.4.1.2 through 5.106.4.1.4 shall be convenient from the street and shall meeting one of the following: (1) covered, lockable enclosures with permanently anchored racks for bicycles; (2) lockable bicycle rooms with permanently anchored racks; or (3) lockable, permanently anchored bicycle lockers. HCD amended section 5.106.5.3.5 allowing future charging spaces to qualify as designated parking for clean air vehicles. HCD updated section 5.303.3.3 in regard to showerhead flow rates. This update reduced the flow rate to 1.8 GPM. HCD amended section 5.304.1 for outdoor potable water use in landscape areas and repealed sections 5.304.2 and 5.304.3. The update requires nonresidential developments to comply with a local water efficient landscape ordinance or the current California Department of Water Resource's' Model Water Efficient Landscape Ordinance (MWELO), whichever is more stringent. Some updates were also made in regard to the outdoor potable water use in landscape areas for public schools and community colleges. HCD updated Section 5.504.5.3 in regard to the use of MERV filters in mechanically ventilated buildings. This update changed the filter use from MERV 8 to MERV 13. MERV 13 filters are to be installed prior to occupancy, and recommendations for maintenance with filters of the same value shall be included in the operation and maintenance manual. The 2022 California Green Building Standards Code became effective on January 1, 2023.³² In the 2022 version of the Code, HCD amended Section 5.106.5.3 in regard to increasing the EV capable space percentages and adding a new requirement for installed Level 2 DCFC chargers. The HCD under Section 5.106.5.4 also added new regulation for electric vehicle charging readiness requirements for new construction of warehouse, grocery stores, and retail stores with planned off-street loading spaces. ³³ ³³ https://www.dgs.ca.gov/BSC/Resources/2022-Title-24-California-Code-Changes _ ³² California Building Standards Commission (CBSC). 2022. California Green Building Standards. Website: https://codes.iccsafe.org/content/CAGBC2022P1. ## Executive Order B-30-15 On April 29, 2015, Governor Brown issued Executive Order B-30-15. Therein, the Governor directed the following: - Established a new interim statewide reduction target to reduce GHG emissions to 40 percent below 1990 levels by 2030. - Ordered all state agencies with jurisdiction over sources of GHG emissions to implement measures to achieve reductions of GHG emissions to meet the 2030 and 2050 reduction targets. - Directed CARB to update the Climate Change Scoping Plan to express the 2030 target in terms of million metric tons of carbon dioxide equivalent. Executive Order B-29-15 Executive Order B-29-15, mandates a statewide 25 percent reduction in potable water usage. EO B-29-15 signed into law on April 1, 2015. Executive Order B-37-16 Executive Order B-37-16, continuing the State's adopted water reductions, was signed into law on May 9, 2016. The water reductions build off the mandatory 25 percent reduction called for in EO B-29-15. Executive Order N-79-20 Executive Order N-79-20 Signed in September 2020, Executive Order N-79-20 establishes as a goal that where feasible, all new passenger cars and trucks, as well as all drayage/cargo trucks and off-road vehicles and equipment, sold in California, will be zero-emission by 2035. The executive order sets a similar goal requiring that all medium and heavy-duty vehicles will be zero-emission by 2045 where feasible. It also directs CARB to develop and propose rulemaking for passenger vehicles and trucks, medium-and heavy-duty fleets where feasible, drayage trucks, and
off-road vehicles and equipment "requiring increasing volumes" of new zero emission vehicles (ZEVs) "towards the target of 100 percent." The executive order directs the California Environmental Protection Agency, the California Geologic Energy Management Division (CalGEM), and the California Natural Resources Agency to transition and repurpose oil production facilities with a goal toward meeting carbon neutrality by 2045. Executive Order N-79-20 builds upon the CARB Advanced Clean Trucks regulation, which was adopted by CARB in July 2020. ## SBX1 2 Signed into law in April 2011, SBX1 2, requires one-third of the State's electricity to come from renewable sources. The legislation increases California's current 20 percent renewables portfolio standard target in 2010 to a 33 percent renewables portfolio standard by December 31, 2020. Senate Bill 350 Signed into law October 7, 2015, SB 350 increases California's renewable electricity procurement goal from 33 percent by 2020 to 50 percent by 2030. This will increase the use of Renewables Portfolio Standard (RPS) eligible resources, including solar, wind, biomass, geothermal, and others. In addition, SB 350 requires the state to double statewide energy efficiency savings in electricity and natural gas end uses by 2030. To help ensure these goals are met and the greenhouse gas emission reductions are realized, large utilities will be required to develop and submit Integrated Resource Plans (IRPs). These IRPs will detail how each entity will meet their customers resource needs, reduce greenhouse gas emissions and ramp up the deployment of clean energy resources. Governor Newsom's September 2022 Climate Legislation On September 16, 2022, California enacted some of the nation's most aggressive climate measures in history as Governor Gavin Newsom signed a sweeping package of legislation to cut pollution, protect Californians from big polluters, and accelerate the state's transition to clean energy. The Governor partnered with legislative leaders to advance groundbreaking measures to achieve carbon neutrality no later than 2045 and 90 percent clean energy by 2035, establish new setback measures protecting communities from oil drilling, capture carbon pollution from the air, advance nature-based solutions, and more. Over the next two decades, the California Climate Commitment will: - Create 4 million new jobs - Cut air pollution by 60 percent - Reduce state oil consumption by 91 percent - Save California \$23 billion by avoiding the damages of pollution - Reduce fossil fuel use in buildings and transportation by 92 percent - Cut refinery pollution by 94 percent³⁴ The following describes a few of the many bills signed in through the Governor's climate package. ## Assembly Bill 1279 Establishes a clear, legally binding, and achievable goal for California to achieve statewide carbon neutrality as soon as possible, and no later than 2045, and establishes an 85% emissions reduction target as part of that goal. #### Senate Bill 1137 Establishes a setback distance of 3,200 feet between any new oil well and homes, schools, parks or businesses open to the public. Ensures comprehensive pollution controls for existing oil wells within 3,200 feet of these facilities. #### Senate Bill 1020 Creates clean electricity targets of 90 percent by 2035 and 95 percent by 2040 with the intent of advancing the state's trajectory to the existing 100 percent clean electricity retail sales by 2045 goal. ## Senate Bill 905 Establishes a clear regulatory framework for carbon removal and carbon capture, utilization and sequestration. Bans the practice of injecting carbon dioxide for the purpose of enhanced oil recovery. ## Assembly Bill 1757 Requires the state to develop an achievable carbon removal target for natural and working lands. Energy Sector and CEQA Guidelines Appendix F The CEC first adopted Energy Efficiency Standards for Residential and Nonresidential Buildings (CCR, Title 24, Part 6) in 1978 in response to a legislative mandate to reduce energy consumption in the state. Although not originally intended to reduce GHG emissions, increased energy efficiency and reduced consumption of ³⁴ https://www.gov.ca.gov/2022/09/16/governor-newsom-signs-sweeping-climate-measures-ushering-in-new-era-of-world-leading-climate-action/ _ electricity, natural gas, and other fuels would result in fewer GHG emissions from residential and nonresidential buildings subject to the standard. The standards are updated periodically (typically every three years) to allow for the consideration and inclusion of new energy efficiency technologies and methods. The 2016 update to the Energy Efficiency Standards for Residential and Nonresidential Buildings focused on several key areas to improve the energy efficiency of renovations and addition to existing buildings as well as newly constructed buildings and renovations and additions to existing buildings. The major efficiency improvements to the residential Standards involve improvements for attics, walls, water heating, and lighting, whereas the major efficiency improvements to the nonresidential Standards include alignment with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 national standards. Furthermore, the 2016 update required that enforcement agencies determine compliance with CCR, Title 24, Part 6 before issuing building permits for any construction.³⁵ Part 11 of the Title 24 Building Energy Efficiency Standards is referred to as the California Green Building Standards (CALGreen) Code. The purpose of the CALGreen Code is to "improve public health, safety and general welfare by enhancing the design and construction of buildings through the use of building concepts having a reduced negative impact or positive environmental impact and encouraging sustainable construction practices in the following categories: (1) Planning and design; (2) Energy efficiency; (3) Water efficiency and conservation; (4) Material conservation and resource efficiency; and (5) Environmental air quality."³⁶ As of January 1, 2011, the CALGreen Code is mandatory for all new buildings constructed in the state. The CALGreen Code establishes mandatory measures for new residential and non-residential buildings. Such mandatory measures include energy efficiency, water conservation, material conservation, planning and design, and overall environmental quality. The CALGreen Code was most recently updated in 2022 to include new mandatory measures for residential and nonresidential uses; the new measures took effect on January 1, 2023. ## Regional - South Coast Air Quality Management District The project is within the South Coast Air Basin, which is under the jurisdiction of the South Coast Air Quality Management District (SCAQMD). SCAQMD Regulation XXVII, Climate Change SCAQMD Regulation XXVII currently includes three rules: - The purpose of Rule 2700 is to define terms and post global warming potentials. - The purpose of Rule 2701, SoCal Climate Solutions Exchange, is to establish a voluntary program to encourage, quantify, and certify voluntary, high quality certified greenhouse gas emission reductions in the SCAQMD. - Rule 2702, Greenhouse Gas Reduction Program, was adopted on February 6, 2009. The purpose of this rule is to create a Greenhouse Gas Reduction Program for greenhouse gas emission reductions in the SCAQMD. The SCAQMD will fund projects through contracts in response to requests for proposals or purchase reductions from other parties. A variety of agencies have developed greenhouse gas emission thresholds and/or have made recommendations for how to identify a threshold. However, the thresholds for projects in the jurisdiction of the SCAQMD remain in flux. The California Air Pollution Control Officers Association explored a variety of threshold approaches but did not recommend one approach (2008). The ARB recommended approaches for setting interim significance thresholds (California Air Resources Board 2008b), in which a draft industrial project threshold suggests that non-transportation related emissions under 7,000 MTCO₂e per year would be ³⁶ California Building Standards Commission, 2010 California Green Building Standards Code, (2010). _ ³⁵ California Energy Commission, 2016 Building Energy Efficiency Standards, June 2015, http://www.energy.ca.gov/2015publications/CEC-400-2015-037/CEC-400-2015-037-CMF.pdf less than significant; however, the ARB has not approved those thresholds and has not published anything since then. The SCAQMD is in the process of developing thresholds, as discussed below. ## SCAQMD Threshold Development For GHG emissions and global warming, there is not, at this time, one established, universally agreed-upon "threshold of significance" by which to measure an impact. While the CARB published some draft thresholds in 2008, they were never adopted, and the CARB recommended that local air districts and lead agencies adopt their own thresholds for GHG impacts. The SCAQMD has been evaluating GHG significance thresholds since April 2008. On December 5, 2008, the SCAQMD Governing Board adopted an interim greenhouse gas significance threshold of $10,000 \, \text{MTCO}_2\text{e}$ for stationary sources, rules, and plans where the SCAQMD is lead agency (SCAQMD permit threshold. However, the SCAQMD is not the lead agency for this project. The SCAQMD has continued to consider adoption of significance thresholds for residential and general development projects. The most recent proposal issued in September 2010 uses the following tiered approach to evaluate potential GHG impacts from various uses ("SCAQMD draft local agency threshold"): - Tier 3 consists of screening values, which the lead agency can choose, but must be consistent with all projects within its jurisdiction. A project's construction emissions are averaged over 30 years and are added to a project's operational emissions. If a project's emissions are under one of the
following screening thresholds, then the project is less than significant: - □ All industrial projects: 10,000 MTCO₂e per year. Option 1 - Based on non-industrial land use type: residential: 3,500 MTCO₂e per year; commercial: 1,400 MTCO₂e per year; or mixed-use: 3,000 MTCO₂e per year. - □ Option 2 - All non-industrial land use types: 3,000 MTCO₂e per year. The thresholds identified above have not been adopted by the SCAQMD or distributed for widespread public review and comment and the working group tasked with developing the thresholds has not met since September 2010. The future schedule and likelihood of threshold adoption is uncertain. If the CARB adopts statewide significance thresholds, SCAQMD staff plan to report back to the SCAQMD Governing Board regarding any recommended changes or additions to the SCAQMD's interim threshold. In the absence of other thresholds of significance promulgated by the SCAQMD, the City of Perris has been using the SCAQMD's 10,000 MTCO₂e threshold for industrial projects and the draft thresholds for non-industrial projects the purpose of evaluating the GHG impacts associated with proposed general development projects. Other lead agencies through the Basin have also been using these adopted and draft thresholds. The City's evaluation of impacts under the 10,000 MTCO₂e per year threshold is also considered to be conservative since it is being applied to all of the GHG emissions generated by the project (i.e., area sources, energy sources, vehicular sources, solid waste sources, and water sources) whereas the SCAQMD's adopted 10,000 MTCO₂e per year threshold applies only to the new stationary sources generated at industrial facilities. ## SCAQMD Working Group Since neither the CARB nor the OPR has developed GHG emissions threshold, the SCAQMD formed a Working Group to develop significance thresholds related to GHG emissions. At the September 28, 2010 Working Group meeting, the SCAQMD released its most current version of the draft GHG emissions thresholds, which recommends a tiered approach that provides a quantitative annual threshold of 10,000 MTCO₂e for industrial uses. In order to assist local agencies with direction on GHG emissions, the SCAQMD organized a working group and adopted Rules 2700, 2701, 2702, and 3002 which are described below. ## SCAQMD Rules 2700 and 2701 The SCAQMD adopted Rules 2700 and 2701 on December 5, 2008, which establishes the administrative structure for a voluntary program designed to quantify GHG emission reductions. Rule 2700 establishes definitions for the various terms used in Regulation XXVII – Global Climate Change. Rule 2701 provides specific protocols for private parties to follow to generate certified GHG emission reductions for projects within the district. Approved protocols include forest projects, urban tree planting, and manure management. The SCAQMD is currently developing additional protocols for other reduction measures. For a GHG emission reduction project to qualify, it must be verified and certified by the SCAQMD Executive Officer, who has 60 days to approve or deny the Plan to reduce GHG emissions. Upon approval of the Plan, the Executive Officer issues required to issue a certified receipt of the GHG emission reductions within 90 days. #### SCAQMD Rule 2702 The SCAQMD adopted Rule 2702 on February 6, 2009, which establishes a voluntary air quality investment program from which SCAQMD can collect funds from parties that desire certified GHG emission reductions, pool those funds, and use them to purchase or fund GHG emission reduction projects within two years, unless extended by the Governing Board. Priority will be given to projects that result in co-benefit emission reductions of GHG emissions and criteria or toxic air pollutants within environmental justice areas. Further, this voluntary program may compete with the cap-and-trade program identified for implementation in CARB's Scoping Plan, or a federal cap and trade program. ## SCAQMD Rule 3002 The SCAQMD amended Rule 3002 on November 5, 2010 to include facilities that emit greater than 100,000 tons per year of CO_2 e are required to apply for a Title V permit by July 1, 2011. A Title V permit is for facilities that are considered major sources of emissions. ## **Local - City of Rialto** The City of Rialto does not currently have a Climate Action Plan. However, the Managing Our Land Supply Chapter of the Rialto General Plan includes the following goals and policies applicable to the reduction of greenhouse gas emissions. - **Goal 2-30** Incorporate green building and other sustainable building practices into development projects. - Policy 2-30.1 Explore and adopt the use of green building standards and Leadership in Energy and Environmental Design (LEED) or similar in both private and public projects. - Policy 2-30.2 Promote sustainable building practices that go beyond the requirements of Title 24 of the California Administrative Code, and encourage energy-efficient design elements, as appropriate. - Policy 2-30.3 Support sustainable building practices that integrate building materials and methods that promote environmental quality, economic vitality, and social benefit through the design, construction, and operation of the built environment. - **Goal 2-31** Conserve energy resources. | Policy 2-30.1 | Require the incorporation of energy conservation features into the design of all new construction and site development activities. | |---------------|---| | Policy 2-30.2 | Provide incentives for the installation of energy conservation measures in existing multi-unit residential and commercial developments, including technical assistance and possibly low-interest loans. | | Policy 2-30.3 | Educate the public regarding the need for energy conservation techniques which can be employed and systems which are available. | | Goal 2-38 | Mitigate against climate change. | | Policy 2-38.1 | Consult with State agencies, SCAG, and the San Bernardino Associated Governments (SANBAG) to implement AB32 and SB375 by utilizing incentives to facilitate infill and transitoriented development. | | Policy 2-38.2 | Encourage development of transit-oriented and infill development, and encourage a mix of uses that foster walking and alternative transportation in Downtown and along Foothill Boulevard. | | Policy 2-38.3 | Provide enhanced bicycling and walking infrastructure, and support public transit, including public bus service, the Metrolink, and the potential for Bus Rapid Transit (BRT). | | Policy 2-38.4 | The City shall participate in the San Bernardino Regional Greenhouse Inventory and | ## **SIGNIFICANCE THRESHOLDS** ## Appendix G of State CEQA Guidelines Reduction Plan. The CEQA Guidelines recommend that a lead agency consider the following when assessing the significance of impacts from GHG emissions on the environment: - The extent to which the project may increase (or reduce) GHG emissions as compared to the existing environmental setting; - Whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project; - The extent to which the project complies with regulations or requirements adopted to implement an adopted statewide, regional, or local plan for the reduction or mitigation of GHG emissions³⁷. ## **Thresholds of Significance for this Project** To determine whether the project's GHG emissions are significant, this analysis uses the SCAQMD screening threshold of 10,000 MTCO₂e per year for industrial uses. ³⁷ The Governor's Office of Planning and Research recommendations include a requirement that such a plan must be adopted through a public review process and include specific requirements that reduce or mitigate the project's incremental contribution of GHG emissions. If there is substantial evidence that the possible effects of a particular project are still cumulatively considerable, notwithstanding compliance with the adopted regulations or requirements, an EIR must be prepared for the project. _ #### **METHODOLOGY** The proposed project is anticipated to generate GHG emissions from area sources, energy usage, mobile sources, waste, water, and construction equipment. The following provides the methodology used to calculate the project-related GHG emissions and the project impacts. CalEEMod Version 2022.1.1.24 was used to calculate the GHG emissions from the proposed project. The CalEEMod Output for year 2025 is available in Appendix B. Each source of GHG emissions is described in greater detail below. #### Area Sources Area sources include emissions from consumer products, landscape equipment and architectural coatings. No changes were made to the default area source emissions. ## Energy Usage Energy usage includes emissions from the generation of electricity and natural gas used on-site. No changes were made to the default energy usage parameters. #### Mobile Sources Mobile sources include emissions from the additional vehicle miles generated from the proposed project. The vehicle trips associated with the proposed project have been analyzed by inputting the project-generated vehicular trips from the Trip Generation Memo into the CalEEMod Model. The program then applies the emission factors for each trip which is provided by the EMFAC2021 model to determine the vehicular traffic pollutant emissions. See Section 2 for details. #### Waste Waste includes the GHG emissions generated from the processing of waste from the proposed project as well as the GHG emissions from the waste once it is interred into a landfill. No changes were made to the default waste parameters. #### Water Water includes the water used for the interior of the building as well as for landscaping and is based on the GHG emissions associated with the energy used
to transport and filter the water. No changes were made to the default water usage parameters. #### Construction The construction-related GHG emissions were also included in the analysis and were based on a 30-year amortization rate as recommended in the SCAQMD GHG Working Group meeting on November 19, 2009. The construction-related GHG emissions were calculated by CalEEMod and in the manner detailed above in Section 2. #### **PROJECT GREENHOUSE GAS EMISSIONS** The GHG emissions have been calculated based on the parameters described above. A summary of the results is shown below in Table 13 and the CalEEMod Model run for the proposed project is provided in Appendix B. Table 13 shows that the total for the proposed project's emissions (without credit for any reductions from sustainable design and/or regulatory requirements) would be 546.26 MTCO₂e per year. According to the thresholds of significance established above, a cumulative global climate change impact would occur if the GHG emissions created from the on-going operations of the proposed project would exceed the SCAQMD threshold of $10,000 \, \text{MTCO}_2\text{e}$ per year for industrial uses. Therefore, operation of the proposed project would not create a significant cumulative impact to global climate change. No mitigation is required. Table 13 Project-Related Greenhouse Gas Emissions | | | Greenhouse Gas Emissions (Metric Tons/Year) | | | | | | | | | | | | | | |-------------------------------------|-------------------|---|-----------------|-----------------|------------------|-------------------|--|--|--|--|--|--|--|--|--| | Category | Bio-CO2 | NonBio-CO ₂ | CO ₂ | CH ₄ | N ₂ O | CO ₂ e | | | | | | | | | | | Maximum Annual Operations | 0.22 | 526.00 | 526.00 | 0.06 | 0.05 | 544.00 | | | | | | | | | | | Construction ¹ | 0.00 | 2.24 | 2.24 | 0.00 | 0.00 | 2.26 | | | | | | | | | | | Total Emissions | 0.22 | 528.24 | 528.24 | 0.06 | 0.05 | 546.26 | | | | | | | | | | | SCAQMD draft screening threshold fo | r industrial uses | | | | | 10,000 | | | | | | | | | | | Exceeds Threshold? | | | | | | No | | | | | | | | | | #### Notes: Source: CalEEMod Version 2022.1.1.24 for Opening Year 2025. (1) Construction GHG emissions CO2e based on a 30 year amortization rate. #### CONSISTENCY WITH APPLICABLE GREENHOUSE GAS REDUCTION PLANS AND POLICIES The proposed project would have the potential to conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases. As stated previously, the City of Rialto does not currently have a Climate Action Plan; therefore, the project and its GHG emissions have been compared to the goals of the CARB Scoping Plan. #### Scoping Plan Emission reductions in California alone would not be able to stabilize the concentration of greenhouse gases in the earth's atmosphere. However, California's actions set an example and drive progress towards a reduction in greenhouse gases elsewhere. If other states and countries were to follow California's emission reduction targets, this could avoid medium or higher ranges of global temperature increases. Thus, severe consequences of climate change could also be avoided. The CARB Board approved a Climate Change Scoping Plan in December 2008. The Scoping Plan outlines the State's strategy to achieve the 2020 greenhouse gas emissions limit. The Scoping Plan "proposes a comprehensive set of actions designed to reduce overall greenhouse gas emissions in California, improve our environment, reduce our dependence on oil, diversify our energy sources, save energy, create new jobs, and enhance public health" (California Air Resources Board 2008). The measures in the Scoping Plan have been in place since 2012. This Scoping Plan calls for an "ambitious but achievable" reduction in California's greenhouse gas emissions, cutting approximately 30 percent from business-as-usual emission levels projected for 2020, or about 10 percent from today's levels. On a per-capita basis, that means reducing annual emissions of 14 tons of carbon dioxide for every man, woman and child in California down to about 10 tons per person by 2020. In May 2014, CARB released its *First Update to the Climate Change Scoping Plan* (CARB 2014). This *Update* identifies the next steps for California's leadership on climate change. While California continues on its path to meet the near-term 2020 greenhouse gas limit, it must also set a clear path toward long-term, deep GHG emission reductions. This report highlights California's success to date in reducing its GHG emissions and lays the foundation for establishing a broad framework for continued emission reductions beyond 2020, on the path to 80 percent below 1990 levels by 2050. CARB's First Update "lays the foundation for establishing a broad framework for continued emission reductions beyond 2020, on the path to 80 percent below 1990 levels by 2050," and many of the emission reduction strategies recommended by CARB would serve to reduce the Project's post-2020 emissions level to the extent required by applicable by law. In November 2017, CARB release the 2017 Scoping Plan. This Scoping Plan incorporates, coordinates, and leverages many existing and ongoing efforts and identifies new policies and actions to accomplish the State's climate goals, and includes a description of a suite of specific actions to meet the State's 2030 GHG limit. In addition, Chapter 4 of the Scoping Plan provides a broader description of the many actions and proposals being explored across the sectors, including the natural resources sector, to achieve the State's mid and long-term climate goals. Guided by legislative direction, the actions identified in the 2017 Scoping Plan reduce overall GHG emissions in California and deliver policy signals that will continue to drive investment and certainty in a low carbon economy. The 2017 Scoping Plan builds upon the successful framework established by the Initial Scoping Plan and First Update, while identifying new, technologically feasible, and cost-effective strategies to ensure that California meets its GHG reduction targets in a way that promotes and rewards innovation, continues to foster economic growth, and delivers improvements to the environment and public health, including in disadvantaged communities. The Plan includes policies to require direct GHG reductions at some of the State's largest stationary sources and mobile sources. These policies include the use of lower GHG fuels, efficiency regulations, and the Cap-and Trade Program, which constrains and reduces emissions at covered sources. Independent studies confirm CARB's determination that the state's existing and proposed regulatory framework will put the state on a pathway to reduce its GHG emissions level to 40 percent below 1990 levels by 2030, and to 80 percent below 1990 levels by 2050 if additional appropriate reduction measures are adopted.³⁸ Even though these studies did not provide an exact regulatory and technological roadmap to achieve the 2030 and 2050 goals, they demonstrated that various combinations of policies could allow the statewide emissions level to remain very low through 2050, suggesting that the combination of new technologies and other regulations not analyzed in the studies would allow the state to meet the 2050 target. In November of 2022, the CARB released the 2022 Scoping Plan. The 2022 Scoping Plan lays out a path to achieve targets for carbon neutrality and reduce anthropogenic GHG emissions by 85 percent below 1990 levels no later than 2045, as directed by Assembly Bill 1279. The actions and outcomes in the plan will achieve significant reductions in fossil fuel combustion by deploying clean technologies and fuels, further reductions in short-lived climate pollutants, support for sustainable development, increased action on natural and working lands to reduce emissions and sequester carbon, and the capture and storage of carbon. As the latest, 2022 Scoping Plan builds upon previous versions, project consistency with applicable strategies of the 2008, 2017, and 2022 Plan are assessed in Table 14. As shown in Table 14, the project is consistent with the applicable strategies within the Scoping Plan. Furthermore. at a level of $546.26 \text{ MTCO}_{2}e$ per year, the project's GHG emissions would be in compliance with the reduction goals of AB-32 and SB-32. Furthermore, the project will comply with applicable Green Building Standards and City of Rialto's policies regarding sustainability (as dictated by the City's General Plan). Impacts are considered to be less than significant. Energy and Environmental Economics (E3). "Summary of the California State Agencies' PATHWAYS Project: Long-term Greenhouse Gas Reduction Scenarios" (April 2015); Greenblatt, Jeffrey, Energy Policy, "Modeling California Impacts on Greenhouse Gas Emissions" (Vol. 78, pp. 158–172). The California Air Resources Board, California Energy Commission, California Public Utilities Commission, and the California Independent System Operator engaged E3 to evaluate the feasibility and cost of a range of potential 2030 targets along the way to the state's goal of reducing GHG emissions to 80 percent below 1990 levels by 2050. With input from the agencies, E3 developed scenarios that explore the potential pace at which emission reductions can be achieved, as well as the mix of technologies and practices deployed. E3 conducted the analysis using its California PATHWAYS model. Enhanced specifically for this study, the model encompasses the entire California economy with detailed representations of the buildings, industry, transportation and electricity sectors. https://www.ethree.com/wp-content/uploads/2017/02/E3 Project Overview 20150406.pdf _ # Table 14 (1 of 2) Project Consistency with CARB Scoping Plan Policies and Meaures | 2008 Scoping Plan Measures to Reduce Greenhouse Gas Emissions | Project Compliance
with Measure | |--|--| | California Light-Duty Vehicle Greenhouse Gas Standards – Implement adopted standards and planned second phase of the program. Align zero-emission vehicle, alternative and renewable fuel and vehicle technology programs with long-term climate change goals. | No Conflict. These are CARB enforced standards; vehicles that access the project (that are required to comply with the standards) will comply with the strategy. | | Energy Efficiency – Maximize energy efficiency building and appliance standards; pursue additional efficiency including new technologies, policy, and implementation mechanisms. Pursue comparable investment in energy efficiency from all retail providers of electricity in California. | No Conflict. The project will be compliant with the current Title 24 standards. | | Low Carbon Fuel Standard – Develop and adopt the Low Carbon Fuel
Standard. | No Conflict. These are CARB enforced standards; vehicles that access the project (that are required to comply with the standards) will comply with the strategy. | | Vehicle Efficiency Measures – Implement light-duty vehicle efficiency measures. | No Conflict. These are CARB enforced standards; vehicles that access the project (that are required to comply with the standards) will comply with the strategy. | | Medium/Heavy-Duty Vehicles – Adopt medium and heavy-duty vehicle efficiency measures. | No Conflict. These are CARB enforced standards; vehicles that access the project (that are required to comply with the standards) will comply with the strategy. | | Green Building Strategy – Expand the use of green building practices to reduce the carbon footprint of California's new and existing inventory of buildings. | No Conflict. The California Green Building Standards Code (proposed Part 11, Title 24) was adopted as part of the California Building Standards Code in the CCR. Part 11 establishes voluntary standards, that are mandatory in the 2022 edition of the Code, on planning and design for sustainable site development, energy efficiency (in excess of the California Energy Code requirements), water conservation, material conservation, and internal air contaminants. | | High Global Warming Potential Gases – Adopt measures to reduce high global warming potential gases. | No Conflict. CARB identified five measures that reduce HFC emissions from vehicular and commercial refrigeration systems; vehicles that access the project (that are required to comply with the measures) will comply with the strategy. | | Recycling and Waste – Reduce methane emissions at landfills. Increase waste diversion, composting, and commercial recycling. Move toward zero waste. | No Conflict. The state is currently developing a regulation to reduce methane emissions from municipal solid waste landfills. The project will be required to comply with City programs, such as City's recycling and waste reduction program, which comply with the 75 percent reduction required per AB 341. | | Water – Continue efficiency programs and use cleaner energy sources to move and treat water. | No Conflict. The project will comply with all applicable City ordinances and CALGreen requirements. | | 2017 Scoping Plan Recommended Actions to Reduce Greenhouse Gas Emissions | Project Compliance with Recommended Action | |---|--| | Implement Mobile Source Strategy: Further increase GHG stringency on all light-duty vehicles beyond existing Advanced Clean Car regulations. | No Conflict. These are CARB enforced standards; vehicles that access the project (that are required to comply with the standards) will comply with the strategy. | | , | No Conflict. These are CARB enforced standards; vehicles that access the project (that are required to comply with the standards) will comply with the strategy. | | Implement Mobile Source Strategy: Innovative Clean Transit: Transition to a suite of to-be-determined innovative clean transit options. Assumed 20 percent of new urban buses purchased beginning in 2018 will be zero emission buses with the penetration of zero-emission technology ramped up to 100 percent of new sales in 2030. Also, new natural gas buses, starting in 2018, and diesel buses, starting in 2020, meet the optional heavy-duty low-NOX standard. | No Conflict. These are CARB enforced standards; vehicles that access the project (that are required to comply with the standards) will comply with the strategy. | # Table 14 (2 of 2) Project Consistency with CARB Scoping Plan Policies and Meaures | Implement Mobile Source Strategy: Last Mile Delivery: New regulation that would result in the use of low NOX or cleaner engines and the deployment of increasing numbers of zero-emission trucks primarily for class 3-7 last mile delivery trucks in California. This measure assumes ZEVs comprise 2.5 percent of new Class 3-7 truck sales in local fleets starting in 2020, increasing to 10 percent in 2025 and remaining flat through 2030. | No Conflict. These are CARB enforced standards; vehicles that access the project (that are required to comply with the standards) will comply with the strategy. | |---|---| | Implement SB 350 by 2030: Establish annual targets for statewide energy efficiency savings and demand reduction that will achieve a cumulative doubling of statewide energy efficiency savings in electricity and natural gas end uses by 2030. | No Conflict. The project will be compliant with the current Title 24 standards. | | By 2019, develop regulations and programs to support organic waste landfill reduction goals in the SLCP and SB 1383. | No Conflict. The project will be required to comply with City programs, such as City's recycling and waste reduction program, which comply, with the 75 percent reduction required by AB 341. | | 2022 Scoping Plan Priority Key Actions and Recommendations | Project Compliance with Recommended Actions | |--|---| | 100 percent of light-duty vehicle sales are ZEVs by 2035. | Not Applicable. This action is in regard to vehicle sales, with an aim to have 100 percent of light-duty vehicle sales be ZEVs by 2035. The proposed project is an industrial use and would not interfere with such policymaking. | | VMT per capita reduced 25 percent below 2019 levels by 2030 and 30 percent below 2019 levels by 2045. | No Conflict. The Project would not result in an unmitigated impact to VMT. The Project is an industrial use in close proximity to existing public transit and existing residential and commercial uses. | | All electric appliances in new construction beginning 2026 (residential) and 2029 (commercial). | No Conflict. The California Green Building Standards Code (proposed Part 11, Title 24) was adopted as part of the California Building Standards Code in the CCR. Part 11 establishes voluntary standards, that are mandatory in the 2022 edition of the Code, on planning and design for sustainable site development, energy efficiency (in excess of the
California Energy Code requirements), water conservation, material conservation, and internal air contaminants. | | For existing residential buildings, 80 percent of appliance sales are electric by 2030 and 100 percent of appliance sales are electric by 2035 (appliances replaced at end of life). For existing commercial buildings, 80 percent of appliance sales are electric by 2030 and 100 percent of appliance sales are electric by 2045 (appliances replaced at end of life) | Not Applicable. This action is in regard to appliance sales and the proposed project is a hotel use with rooftop restaurant and would not interfere with such policymaking. Furthermore, although this action is not necessarily applicable on a project-specific basis, the proposed project is subject to the California Green Building Standards Code (proposed Part 11, Title 24) which was adopted as part of the California Building Standards Code in the CCR. Part 11 establishes voluntary standards, that are mandatory in the 2022 edition of the Code, on planning and design for sustainable site development, energy efficiency (in excess of the California Energy Code requirements), water conservation, material conservation, and internal air contaminants. | #### Notes (1) Source: CARB Scoping Plan (2008, 2017, and 2022) #### **CUMULATIVE GREENHOUSE GAS IMPACTS** Although the project is expected to emit GHGs, the emission of GHGs by a single project into the atmosphere is not itself necessarily an adverse environmental effect. Rather, it is the increased accumulation of GHG from more than one project and many sources in the atmosphere that may result in global climate change. Therefore, in the case of global climate change, the proximity of the project to other GHG emission generating activities is not directly relevant to the determination of a cumulative impact because climate change is a global condition. According to CAPCOA, "GHG impacts are exclusively cumulative impacts; there are no noncumulative GHG emission impacts from a climate change perspective." The resultant consequences of that climate change can cause adverse environmental effects. A project's GHG emissions typically would be very small in comparison to state or global GHG emissions and, consequently, they would, in isolation, have no significant direct impact on climate change. In 2006, under Assembly Bill 32, the state mandated a goal of reducing statewide emissions to 1990 levels by 2020. In November of 2022, the CARB released the 2022 Scoping Plan. The 2022 Scoping Plan lays out a path to achieve targets for carbon neutrality and reduce anthropogenic GHG emissions by 85 percent below 1990 levels no later than 2045, as directed by Assembly Bill 1279. In order to achieve these goals, CARB is in the process of establishing and implementing regulations to reduce statewide GHG emissions. Consistent with CEQA Guidelines Section 15064h(3),⁴⁰ the City, as lead agency, has determined that the project's contribution to cumulative GHG emissions and global climate change would be less than significant if the project is consistent with the applicable regulatory plans and policies to reduce GHG emissions. As discussed in the Consistency With Applicable Greenhouse Gas Reduction Plans and Policies section above, the project is consistent with the goals of the CARB Scoping Plan. Thus, given the project's consistency with the CARB Scoping Plan and SCAQMD's 10,000 MTCO₂e per year threshold for industrial uses, the project would not conflict with any applicable plan, policy, or regulation of an agency adopted for the purpose of reducing the emissions of GHGs. Given this consistency, it is concluded that the project's incremental contribution to greenhouse gas emissions and their effects on climate change would not be cumulatively considerable. ⁴⁰ The State CEQA Guidelines were amended in response to SB 97. In particular, the State CEQA Guidelines were amended to specify that compliance with a GHG emissions reduction program renders a cumulative impact insignificant. Per State CEQA Guidelines Section 15064(h)(3), a project's incremental contribution to a cumulative impact can be found not cumulatively considerable if the project will comply with an approved plan or mitigation program that provides specific requirements that will avoid or substantially lessen the cumulative problem within the geographic area of the project. To qualify, such a plan or program must be specified in law or adopted by the public agency with jurisdiction over the affected resources through a public review process to implement, interpret, or make specific the law enforced or administered by the public agency. Examples of such programs include a "water quality control plan, air quality attainment or maintenance plan, integrated waste management plan, habitat conservation plan, natural community conservation plan, [and] plans or regulations for the reduction of greenhouse gas emissions." _ ³⁹ Source: California Air Pollution Control Officers Association, CEQA & Climate change: Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act, (2008). ## 4. EMISSIONS REDUCTION MEASURES #### **CONSTRUCTION MEASURES** Adherence to SCAQMD Rule 403 is required. No construction mitigation is required. #### **OPERATIONAL MEASURES** No operational mitigation is required. ### 5. REFERENCES #### California Air Resources Board 2008 Resolution 08-43 2008 Recommended Approaches for Setting Interim Significance Thresholds for Greenhouse Gases under the California Environmental Quality Act 2008 Climate Change Scoping Plan, a framework for change. 2011 Supplement to the AB 32 Scoping Plan Functional Equivalent Document 2013 Almanac of Emissions and Air Quality. Source: https://www.arb.ca.gov/aqd/almanac/almanac13/almanac13.htm 2014 First Update to the Climate Change Scoping Plan, Building on the Framework Pursuant to AB32, the California Global Warming Solutions Act of 2006. May. 2017 California's 2017 Climate Change Scoping Plan. November. 2022 2022 Scoping Plan for Achieving Carbon Neutrality. November 16. #### City of Rialto 2010 City of Rialto General Plan. December. #### Governor's Office of Planning and Research - 2008 CEQA and Climate: Addressing Climate Change Through California Environmental Quality Act (CEQA) Review - 2018 CEQA Guideline Sections to be Added or Amended #### Intergovernmental Panel on Climate Change (IPCC) 2014 IPCC Fifth Assessment Report, Climate Change 2014: Synthesis Report #### Office of Environmental Health Hazard Assessment 2015 Air Toxics Hot Spots Program Risk Assessment Guidelines #### **South Coast Air Quality Management District** - 1993 CEQA Air Quality Handbook - 2005 Rule 403 Fugitive Dust - 2007 Air Quality Management Plan - 2008 Final Localized Significance Threshold Methodology, Revised - 2012 Final 2012 Air Quality Management Plan - 2016 2016 Air Quality Management Plan - 2022 2022 Air Quality Management Plan. December 2. #### **Southern California Association of Governments** 2020 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy #### TJW Engineering, Inc. 2024 Stonehurst Truck Storage Trip Generation Memo. May 15. #### **U.S. Environmental Protection Agency (EPA)** 2017 Understanding Global Warming Potentials (Source: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials) #### **U.S. Geological Survey** 2011 Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Other Natural Occurrences of Asbestos in California # **APPENDICES** Appendix A Glossary Appendix B CalEEMod Model Detailed Report **APPENDIX A** **G**LOSSARY AQMP Air Quality Management Plan BACT Best Available Control Technologies CAAQS California Ambient Air Quality Standards California Environmental Protection Agency CARB California Air Resources Board CCAA California Clean Air Act CCAR California Climate Action F CCAR California Climate Action Registry CEQA California Environmental Quality Act CFCs Chlorofluorocarbons CH₄ Methane $\begin{array}{ccc} \mathsf{CNG} & & \mathsf{Compressed} \ \mathsf{natural} \ \mathsf{gas} \\ \mathsf{CO} & & \mathsf{Carbon} \ \mathsf{monoxide} \\ \mathsf{CO}_2 & & \mathsf{Carbon} \ \mathsf{dioxide} \end{array}$ CO₂e Carbon dioxide equivalent DPM Diesel particulate matter EPA U.S. Environmental Protection Agency GHG Greenhouse gas GWP Global warming potential HIDPM Hazard Index Diesel Particulate Matter HFCs Hydrofluorocarbons IPCC International Panel on Climate Change LCFS Low Carbon Fuel Standard Localized Significant Thresholds MTCO₂e Metric tons of carbon dioxide equivalent MMTCO₂e Million metric tons of carbon dioxide equivalent MPO Metropolitan Planning Organization NAAQS National Ambient Air Quality Standards NOx Nitrogen Oxides NO₂ Nitrogen dioxide N₂O Nitrous oxide O₃ Ozone OPR Governor's Office of Planning and Research PFCs Perfluorocarbons PM Particle matter PM10 Particles that are less than 10 micrometers in diameter PM2.5 Particles that are less than 2.5 micrometers in diameter PMI Point of maximum impact PPM Parts per million PPB Parts per billion RTIP Regional Transportation Improvement Plan RTP Regional Transportation Plan SANBAG San Bernardino Association of Governments SCAB South Coast Air Basin SCAG Southern California Association of Governments SCAQMD South Coast Air Quality Management District SSAB Salton Sea Air Basin SF6 Sulfur hexafluoride SIP State Implementation Plan SOx Sulfur Oxides TAC Toxic air contaminants VOC Volatile organic compounds # APPENDIX B CALEEMOD MODEL DETAILED REPORT # 19721 2160 Stonehurst Drive Truck Yard - CONSTRUCTION ANALYSIS ONLY Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 3.
Construction Emissions Details - 3.1. Demolition (2025) Unmitigated - 3.3. Grading (2025) Unmitigated - 3.5. Paving (2025) Unmitigated - 3.7. Architectural Coating (2025) Unmitigated - 4. Operations Emissions Details - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and Emissions Factors - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value | |-----------------------------|---| | Project Name | 19721 2160 Stonehurst Drive Truck Yard - CONSTRUCTION ANALYSIS ONLY | | Construction Start Date | 2/1/2025 | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.80 | | Precipitation (days) | 6.40 | | Location | 2160 W Stonehurst Dr, Rialto, CA 92377, USA | | County | San Bernardino-South Coast | | City | Rialto | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5315 | | EDFZ | 10 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | | App Version | 2022.1.1.24 | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq ft) | Special Landscape
Area (sq ft) | Population | Description | |------------------|------|-------|-------------|-----------------------|------------------------|-----------------------------------|------------|-------------| | Parking Lot | 85.0 | Space | 1.44 | 0.00 | 21,650 | _ | _ | _ | ## 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected # 2. Emissions Summary ## 2.1. Construction Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | | | <i>J</i> , | | | ` | | J. | _ | | | | | | | | | |---------------------------|------|------|------|------------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|---------|---------|------|-------| | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 2.62 | 2.49 | 5.57 | 8.61 | 0.01 | 0.23 | 0.16 | 0.39 | 0.21 | 0.04 | 0.25 | _ | 1,301 | 1,301 | 0.05 | 0.02 | 0.65 | 1,308 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 2.56 | 2.17 | 18.8 | 22.3 | 0.03 | 0.85 | 3.06 | 3.90 | 0.78 | 1.40 | 2.18 | _ | 3,737 | 3,737 | 0.21 | 0.19 | 0.07 | 3,753 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.29 | 0.25 | 1.72 | 2.20 | < 0.005 | 0.07 | 0.12 | 0.19 | 0.06 | 0.03 | 0.10 | _ | 406 | 406 | 0.02 | 0.01 | 0.11 | 410 | | Annual
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.05 | 0.04 | 0.31 | 0.40 | < 0.005 | 0.01 | 0.02 | 0.04 | 0.01 | 0.01 | 0.02 | _ | 67.1 | 67.1 | < 0.005 | < 0.005 | 0.02 | 67.9 | ## 2.2. Construction Emissions by Year, Unmitigated | Year | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily -
Summer | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | (Max) | 2025 | 2.62 | 2.49 | 5.57 | 8.61 | 0.01 | 0.23 | 0.16 | 0.39 | 0.21 | 0.04 | 0.25 | _ | 1,301 | 1,301 | 0.05 | 0.02 | 0.65 | 1,308 | |----------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|---------|---------|------|-------| | Daily -
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2025 | 2.56 | 2.17 | 18.8 | 22.3 | 0.03 | 0.85 | 3.06 | 3.90 | 0.78 | 1.40 | 2.18 | _ | 3,737 | 3,737 | 0.21 | 0.19 | 0.07 | 3,753 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2025 | 0.29 | 0.25 | 1.72 | 2.20 | < 0.005 | 0.07 | 0.12 | 0.19 | 0.06 | 0.03 | 0.10 | _ | 406 | 406 | 0.02 | 0.01 | 0.11 | 410 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2025 | 0.05 | 0.04 | 0.31 | 0.40 | < 0.005 | 0.01 | 0.02 | 0.04 | 0.01 | 0.01 | 0.02 | _ | 67.1 | 67.1 | < 0.005 | < 0.005 | 0.02 | 67.9 | # 3. Construction Emissions Details # 3.1. Demolition (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | всо2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 1.47 | 13.9 | 15.1 | 0.02 | 0.57 | _ | 0.57 | 0.52 | _ | 0.52 | _ | 2,494 | 2,494 | 0.10 | 0.02 | _ | 2,502 | | Demolitio
n | _ | _ | _ | _ | _ | _ | 0.79 | 0.79 | _ | 0.12 | 0.12 | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.08 | 0.76 | 0.83 | < 0.005 | 0.03 | _ | 0.03 | 0.03 | _ | 0.03 | _ | 137 | 137 | 0.01 | < 0.005 | _ | 137 | |---------------------------|---------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|-------| | Demolitio
n | _ | _ | _ | _ | _ | _ | 0.04 | 0.04 | _ | 0.01 | 0.01 | - | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.14 | 0.15 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | - | 22.6 | 22.6 | < 0.005 | < 0.005 | _ | 22.7 | | Demolitio
n | _ | _ | _ | - | _ | _ | 0.01 | 0.01 | _ | < 0.005 | < 0.005 | - | _ | _ | _ | _ | _ | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | - | _ | - | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.06 | 0.05 | 0.06 | 0.73 | 0.00 | 0.00 | 0.16 | 0.16 | 0.00 | 0.04 | 0.04 | _ | 161 | 161 | 0.01 | 0.01 | 0.02 | 164 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.12 | 0.02 | 1.23 | 0.67 | 0.01 | 0.01 | 0.26 | 0.28 | 0.01 | 0.07 | 0.08 | _ | 982 | 982 | 0.10 | 0.16 | 0.05 | 1,033 | | Average
Daily | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.04 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | < 0.005 | < 0.005 | _ | 8.97 | 8.97 | < 0.005 | < 0.005 | 0.02 | 9.10 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.01 | < 0.005 | 0.07 | 0.04 | < 0.005 | < 0.005 | 0.01 | 0.02 | < 0.005 | < 0.005 | < 0.005 | _ | 53.8 | 53.8 | 0.01 | 0.01 | 0.05 | 56.6 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 1.49 | 1.49 | < 0.005 | < 0.005 | < 0.005 | 1.51 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8^p/27 # 3.3. Grading (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|----------|---------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------
-------|---------|---------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 1.51 | 14.1 | 14.5 | 0.02 | 0.64 | _ | 0.64 | 0.59 | _ | 0.59 | _ | 2,455 | 2,455 | 0.10 | 0.02 | _ | 2,463 | | Dust
From
Material
Movemen | _ | _ | _ | _ | _ | _ | 2.76 | 2.76 | _ | 1.34 | 1.34 | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.02 | 0.15 | 0.16 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 26.9 | 26.9 | < 0.005 | < 0.005 | _ | 27.0 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | - | - | 0.03 | 0.03 | _ | 0.01 | 0.01 | - | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | < 0.005 | 0.03 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 4.45 | 4.45 | < 0.005 | < 0.005 | _ | 4.47 | | Dust
From
Material
Movemen | | _ | _ | _ | _ | _ | 0.01 | 0.01 | _ | < 0.005 | < 0.005 | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|---------|---------|---------|---------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.05 | 0.04 | 0.05 | 0.59 | 0.00 | 0.00 | 0.13 | 0.13 | 0.00 | 0.03 | 0.03 | _ | 129 | 129 | 0.01 | < 0.005 | 0.01 | 131 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 1.44 | 1.44 | < 0.005 | < 0.005 | < 0.005 | 1.46 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 0.24 | 0.24 | < 0.005 | < 0.005 | < 0.005 | 0.24 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.5. Paving (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | |---------------------------|---------|---------|------|------|---------|------|------|------|------|------|------|---|------|------|---------|---------|------|------| | Off-Road
Equipmen | | 0.49 | 4.63 | 6.50 | 0.01 | 0.20 | - | 0.20 | 0.19 | - | 0.19 | _ | 992 | 992 | 0.04 | 0.01 | _ | 995 | | Paving | 0.07 | 0.07 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | - | - | _ | _ | _ | - | _ | - | _ | _ | | Off-Road
Equipmen | | 0.49 | 4.63 | 6.50 | 0.01 | 0.20 | _ | 0.20 | 0.19 | _ | 0.19 | _ | 992 | 992 | 0.04 | 0.01 | _ | 995 | | Paving | 0.07 | 0.07 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Off-Road
Equipmen | | 0.07 | 0.70 | 0.98 | < 0.005 | 0.03 | _ | 0.03 | 0.03 | _ | 0.03 | _ | 149 | 149 | 0.01 | < 0.005 | _ | 150 | | Paving | 0.01 | 0.01 | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.13 | 0.18 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 24.7 | 24.7 | < 0.005 | < 0.005 | _ | 24.8 | | Paving | < 0.005 | < 0.005 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.06 | 0.06 | 0.05 | 0.97 | 0.00 | 0.00 | 0.16 | 0.16 | 0.00 | 0.04 | 0.04 | _ | 176 | 176 | 0.01 | 0.01 | 0.65 | 179 | |---------------------------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|------|------| | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Vorker | 0.06 | 0.05 | 0.06 | 0.73 | 0.00 | 0.00 | 0.16 | 0.16 | 0.00 | 0.04 | 0.04 | _ | 161 | 161 | 0.01 | 0.01 | 0.02 | 164 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.12 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.01 | 0.01 | _ | 24.7 | 24.7 | < 0.005 | < 0.005 | 0.04 | 25.0 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.02 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 4.09 | 4.09 | < 0.005 | < 0.005 | 0.01 | 4.14 | | √endor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.7. Architectural Coating (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|------|---------|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.13 | 0.88 | 1.14 | < 0.005 | 0.03 | _ | 0.03 | 0.03 | _ | 0.03 | _ | 134 | 134 | 0.01 | < 0.005 | _ | 134 | | Architect
ural
Coatings | 1.74 | 1.74 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------------------------|------|---------|---------|------|---------|---------|------|---------|---------|------|---------|---|------|------|---------|---------|------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmer | | < 0.005 | 0.02 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 3.66 | 3.66 | < 0.005 | < 0.005 | _ | 3.67 | | Architect
ural
Coatings | 0.05 | 0.05 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmer | | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 0.61 | 0.61 | < 0.005 | < 0.005 | _ | 0.61 | | Architect
ural
Coatings | 0.01 | 0.01 | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|----------|------|------|------|------|------|------| | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | _ | _ | | Worker | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | <u> </u> | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 4. Operations Emissions Details 4.10. Soil Carbon Accumulation By Vegetation Type 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated | Vegetatio
n | | ROG | | со | SO2 | PM10E | | | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|---|-----|---|----|-----|-------|---|---|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
_ | _ | _ | I | |-------|---|---|---|---|---|---|---|---|---|---|---|---|---|-------|---|---|---| | Iotai | ### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | | | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|---|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species | TOG | ROG | | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|----------|---|---|---|---|---|---|---|---|---|---|---| | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | | <u> </u> | _ | | _ | _ | | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data # 5.1. Construction Schedule | Dhana Nama | Dhoop Type | Start Data | End Data | Daya Bar Wask | Work Days per Phase | Dhaga Description | |------------|------------|------------|----------|---------------|---------------------|-------------------| | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | | Demolition | Demolition | 2/1/2025 | 3/1/2025 | 5.00 | 20.0 | _ | |-----------------------|-----------------------|-----------|-----------|------|------|---| | Grading | Grading | 3/2/2025 | 3/6/2025 | 5.00 | 4.00 | _ | | Paving | Paving | 3/6/2025 | 5/21/2025 | 5.00 | 55.0 | _ | | Architectural Coating | Architectural Coating | 5/18/2025 | 6/1/2025 | 5.00 | 10.0 | _ | # 5.2. Off-Road Equipment # 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |-----------------------|-----------------------------|-----------|-------------|----------------|---------------|------------|-------------| | Demolition | Concrete/Industrial
Saws | Diesel | Average | 1.00 | 8.00 | 33.0 | 0.73 | | Demolition | Rubber Tired Dozers | Diesel | Average | 1.00 | 8.00 | 367 | 0.40 | | Demolition | Tractors/Loaders/Backh oes | Diesel | Average | 3.00 | 8.00 | 84.0 | 0.37 | | Grading | Graders | Diesel | Average | 1.00 | 8.00 | 148 | 0.41 | | Grading | Rubber Tired Dozers | Diesel | Average | 1.00 | 8.00 | 367 | 0.40 | | Grading | Tractors/Loaders/Backh oes | Diesel | Average | 2.00 | 7.00 | 84.0 | 0.37 | | Paving | Cement and Mortar
Mixers | Diesel | Average | 1.00 | 6.00 | 10.0 | 0.56 | | Paving | Pavers | Diesel | Average | 1.00 | 6.00 | 81.0 | 0.42 | | Paving | Paving Equipment | Diesel | Average | 1.00 | 8.00 | 89.0 | 0.36 | | Paving | Rollers | Diesel | Average | 1.00 | 7.00 | 36.0 | 0.38 | | Paving | Tractors/Loaders/Backh oes | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 | | Architectural Coating | Air Compressors | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 | ## 5.3. Construction Vehicles ## 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |-----------------------|--------------|-----------------------|----------------|---------------| | Grading | _ | _ | _ | _ | | Grading | Worker | 10.0 | 18.5 | LDA,LDT1,LDT2 | | Grading | Vendor | _ | 10.2 | HHDT,MHDT | | Grading | Hauling | 0.00 | 20.0 | HHDT | | Grading | Onsite truck | _ | _ | HHDT | | Paving | _ | _ | _ | _ | | Paving | Worker | 12.5 | 18.5 | LDA,LDT1,LDT2 | | Paving | Vendor | _ | 10.2 | HHDT,MHDT | | Paving | Hauling | 0.00 | 20.0 | HHDT | | Paving | Onsite truck | _ | _ | HHDT | | Architectural Coating | _ | _ | _ | _ | | Architectural Coating | Worker | 0.00 | 18.5 | LDA,LDT1,LDT2 | | Architectural Coating | Vendor | _ | 10.2 | HHDT,MHDT | | Architectural Coating |
Hauling | 0.00 | 20.0 | HHDT | | Architectural Coating | Onsite truck | _ | _ | HHDT | | Demolition | _ | _ | _ | _ | | Demolition | Worker | 12.5 | 18.5 | LDA,LDT1,LDT2 | | Demolition | Vendor | _ | 10.2 | HHDT,MHDT | | Demolition | Hauling | 14.2 | 20.0 | HHDT | | Demolition | Onsite truck | _ | _ | HHDT | ## 5.4. Vehicles ## 5.4.1. Construction Vehicle Control Strategies Control Strategies Applied PM10 Reduction PM2.5 Reduction | Water unpaved roads twice daily | 55% | 55% | |---|-----|-----| | Limit vehicle speeds on unpaved roads to 25 mph | 44% | 44% | # 5.5. Architectural Coatings | Phase Name | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area
Coated (sq ft) | Non-Residential Exterior Area
Coated (sq ft) | Parking Area Coated (sq ft) | |-----------------------|--|--|---|---|-----------------------------| | Architectural Coating | 0.00 | 0.00 | 0.00 | 0.00 | 3,764 | # 5.6. Dust Mitigation ## 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (cy) | Material Exported (cy) | l | Material Demolished (Ton of Debris) | Acres Paved (acres) | |------------|------------------------|------------------------|------|-------------------------------------|---------------------| | Demolition | 0.00 | 0.00 | 0.00 | 1,136 | _ | | Grading | _ | _ | 4.00 | 0.00 | _ | | Paving | 0.00 | 0.00 | 0.00 | 0.00 | 1.44 | ## 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------|----------------|-----------------| | Water Exposed Area | 2 | 61% | 61% | | Water Demolished Area | 2 | 36% | 36% | ## 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |-------------|--------------------|-----------| | Parking Lot | 1.44 | 100% | ## 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | Year | kWh per Year | CO2 | CH4 | N2O | |------|--------------|-----|------|---------| | 2025 | 0.00 | 532 | 0.03 | < 0.005 | 5.18. Vegetation 5.18.1. Land Use Change 5.18.1.1. Unmitigated Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres 5.18.1. Biomass Cover Type 5.18.1.1. Unmitigated Biomass Cover Type Initial Acres Final Acres 5.18.2. Sequestration 5.18.2.1. Unmitigated Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year) # 6. Climate Risk Detailed Report ## 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 27.6 | annual days of extreme heat | | Extreme Precipitation | 6.85 | annual days with precipitation above 20 mm | | Sea Level Rise | _ | meters of inundation depth | | Wildfire | 15.9 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.41 meters Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. ## 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. ## 6.4. Climate Risk Reduction Measures # 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------|---------------------------------| | Exposure Indicators | _ | | AQ-Ozone | 98.7 | | AQ-PM | 76.3 | | AQ-DPM | 52.6 | | Drinking Water | 95.8 | | Lead Risk Housing | 10.9
- 26 | 22× 27 | Pesticides | 0.00 | |---------------------------------|------| | Toxic Releases | 62.6 | | Traffic | 61.3 | | Effect Indicators | _ | | CleanUp Sites | 88.3 | | Groundwater | 97.4 | | Haz Waste Facilities/Generators | 85.2 | | Impaired Water Bodies | 0.00 | | Solid Waste | 93.6 | | Sensitive Population | _ | | Asthma | 48.9 | | Cardio-vascular | 83.4 | | Low Birth Weights | 65.8 | | Socioeconomic Factor Indicators | _ | | Education | 48.8 | | Housing | 12.8 | | Linguistic | 40.4 | | Poverty | 36.8 | | Unemployment | 77.8 | ## 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------|---------------------------------| | Economic | _ | | Above Poverty | 68.84383421 | | Employed | 51.71307584 | | Median HI | 83.8829719 | | Backelor's or higher 52.44450148 High school enrollment 21.68612858 Preschool enrollment 43.9417298 Tornsportation 43.9417298 Active Communing 88.83703323 Active Communing 19.6330098 Social 67.67611959 2-parent households 67.67611959 Volting 50.325292 Neighborhood 57.141024 Accobal swallability 57.141024 Accobal swallability 57.141024 Park accass 20.69171308 Retail density 52.8948622 Tree canopy 13.5249583 Housing 48.8670217 Lowing habibility 90.86076351 Lowing habibility 48.8670217 Lowing habibility 89.488747 habibil | Education | |
--|--|-------------| | Filips school enrollment 21.68612858 Preschool enrollment 34.36417298 Transportation — Auto Access 89.3703323 Active commuting 19.63300398 Social — 2-parent households 67.67611959 Voling 45.05325292 Neighborhood 57.141024 Alcohol availability 57.141024 Park access 29.05171308 Retail density 28.848967 Supermarket access 25.0994822 Housing 9.8507631 Housing habitability 9.8507631 Housing habitability 9.8507631 Low-inc homeowner severe housing cost burden 9.8507631 Low-inc homeowner severe housing cost burden 9.84827 Low-inc rener severe housing cost burden 9.8507631 Low-inc rener severe housing cost burden 9.8507631 Low-inc rener severe housing cost burden 9.9444373 Low-inc rener severe housing cost burden 9.9444373 Low-inc rener severe housing cost burden 9.944822 Low-inc rener severe housing c | Education | | | Peschool enrollment 34.6417288 Transportation — Auto Access 88.8370323 Active commuting 19.63300398 Scoial — 2-parent households 76.7611959 Voting 45.05325292 Nolghorbood — Alcohol availability 71.41024 Park access 20.05171309 Supermarket access 25.0944822 Tree canopy 15.5249583 Housing — Housing habitability 84.8670217 Housing habitability 84.8670217 Low-inch nomeowner severe housing cost burden 84.8670217 Low-inch nomeowner severe housing cost burden 84.8670217 Low-inch nomeowner severe housing cost burden 84.9670217 Low-inch nomeowner severe housing cost burden 85.74336417 Low-inch nomeowner severe housing cost burden 85.7423366 | Bachelor's or higher | 52.44450148 | | Transportation — Auto Access 89.83703323 Active commuting 19.63300398 Social — 2-parent households 67.67611959 Voting 45.05325292 Naighborhood — Alcohol availability 57.141024 Park access 29.05171308 Retail density 28.848967 Supermarket access 25.9984822 Housing — Housing 9.85076351 Housing hobitability 8.86070217 Housing habitability 8.89670217 Low-inc homeowner severe housing cost burden 9.85076351 Low-inc homeowner severe housing cost burden 55.43436417 Low-inc renter severe housing cost burden 55.43436417 Low-inc renter severe housing cost burden 55.7423326 Low-inc renter severe housing cost burden 55.7423326 Low-inc adults 68.8 Arthritis 8.8 Arthritis 8.8 | High school enrollment | 21.68612858 | | Auto Access 88.8970323 Active commuting 19.63300398 Social 2-parent households 67.67611959 Voting 45.05325292 Neighborhood Alcohol availability 57.41102 Park access 29.05171308 Retail density 28.848967 Supermarket access 5.09944822 Tree canopy 45.59583 Housing Housing 9.85076351 Housing habitability 8.88076217 Low-inc homeowner severe housing cost burden 5.8438417 Low-inc homeowner severe housing cost burden 5.43438417 Low-inc renter severe housing cost burden 5.7423386 Heath Outcomes 5.7423386 Heath Outcomes 8.80466 Arthritis 8.80 Ashma ER Admissions 8.81 | Preschool enrollment | 34.36417298 | | Active commuting 16.8300398 Social | Transportation | _ | | Social — 2-parent households 67.67611959 Voting 45.05325292 Neighborhood — Alcohol availability 57.141024 Park access 20.6171308 Retail density 28.848967 Supermarket access 5.09944822 Tree canopy 15.249583 Housing — Housing halibility 88.8670217 Low-inc homeowner severe housing cost burden 58.4336417 Low-inc renter severe housing cost burden 59.4443732 Uncrowded housing 57.423286 Health Outcomes 57.423286 Health Outcomes 58.10342615 Arthritis 86.8 Asthma ER Admissions 49.5 | Auto Access | 89.83703323 | | 2-parent households 67.67611959 Voting 45.0532592 Neighborhood Alcohol availability 57.141024 Park access 29.05171308 Retail density 28.8848967 Supernarket access 25.09944822 Tree canopy 13.5249583 Housing Homeownership 84.89670217 Low-inc homeowner severe housing cost burden 55.43436417 Low-inc netter severe housing cost burden 55.43436417 Low-inc renter severe housing cost burden 69.9444373 Uncrowded housing 57.423286 Health Outcomes 58.10342615 Insured adults 88.10342615 Arthritis 86.8 Asthma ER Admissions 49.5 | Active commuting | 19.63300398 | | Voting 45.0332592 Neighborhood - Alcohol availability 57.141024 Park access 25.05171308 Retail density 28.848967 Supermarket access 5.09944822 Tree canopy 13.5249583 Housing - Homeownership 9.85076351 Low-inc homeowner severe housing cost burden 4.89670217 Low-inc netter severe housing cost burden 5.43436417 Low-inc renter severe housing cost burden 9.94443732 Uncrowded housing 5.74233286 Health Outcomes - Insued adults 5.10342615 Arthritis 8.8 Asthma ER Admissions 49.5 | Social | _ | | Neighborhood — Alcohol availability 57.141024 Park access 29.05171308 Retail density 28.848967 Supermarket access 25.09944822 Tee canopy 13.5249583 Housing — Homeownership 90.85076351 Low-inc homeowner severe housing cost burden 48.89670217 Low-inc homeowner severe housing cost burden 55.43436417 Low-inc renter severe housing cost burden 90.94443732 Uncrowded housing 55.74233286 Health Outcomes — Insued adults 58.10342615 Arthritis 86.8 Asthma ER Admissions 49.5 | 2-parent households | 67.67611959 | | Alcohol availability 57.141024 Park access 29.05171308 Retail density 28.8848967 Supermarket access 25.09944822 Tree canopy 13.5249583 Housing - Homeownership 90.85076351 Housing habitability 44.89670217 Low-inc homeowner severe housing cost burden 54.946417 Low-inc renter severe housing cost burden 80.94443732 Uncrowded housing 55.74233286 Health Outcomes - Insured adults 56.10342615 Arthritis 68.8 Athma ER Admissions 49.5 | Voting | 45.05325292 | | Park access 29.05171308 Retail density 26.8848967 Supermarket access 25.09944822 Tree canopy 13.5249583 Housing - Homeownership 90.85076351 Housing habitability 84.89670217 Low-inc homeowner severe housing cost burden 55.43436417 Low-inc renter severe housing cost burden 80.94443732 Uncrowded housing 55.74233286 Health Outcomes - Insured adults 56.10342615 Arthritis 86.8 Asthma ER Admissions 49.5 | Neighborhood | _ | | Retail density 28.8848967 Supermarket access 25.09944822 Tree canopy 13.5249583 Housing - Homeownership 90.85076351 Housing habitability 84.89670217 Low-inc homeowner severe housing cost burden 55.43436417 Low-inc renter severe housing cost burden 80.94443732 Uncrowded housing 55.74233286 Health Outcomes - Insured adults 88.10342615 Arthritis 86.8 Asthma ER Admissions 49.5 | Alcohol availability | 57.141024 | | Supermarket access 25.09944822 Tree canopy 13.5249583 Housing - Homeownership 90.85076351 Housing habitability 84.89670217 Low-inc homeowner severe housing cost burden 55.43436417 Low-inc renter severe housing cost burden 80.94443732 Uncrowded housing 55.74233286 Health Outcomes - Insured adults 58.10342615 Arthritis 86.8 Asthma ER Admissions 49.5 | Park access | 29.05171308 | | Tree canopy 13.5249583 Housing - Homeownership 90.85076351 Housing habitability 84.89670217 Low-inc homeowner severe housing cost burden 55.4346417 Low-inc renter severe housing cost burden 80.94443732 Uncrowded housing 55.74233286 Health Outcomes - Insured adults 58.10342615 Arthritis 86.8 Asthma ER Admissions 49.5 | Retail density | 28.8848967 | | Housing — Homeownership 90.85076351 Housing habitability 84.89670217 Low-inc homeowner severe housing cost burden 55.43436417 Low-inc renter severe housing cost burden 80.9443732 Uncrowded housing 55.74233286 Health Outcomes — Insured adults 81.0342615 Arthritis 86.8 Asthma ER Admissions 9.5 | Supermarket access | 25.09944822 | | Homeownership 90.85076351 Housing habitability 84.89670217 Low-inc homeowner severe housing cost burden 55.43436417 Low-inc renter severe housing cost burden 80.94443732 Uncrowded housing 55.74233286 Health Outcomes - Insured adults 58.10342615 Arthritis 86.8 Asthma ER Admissions 90.5 | Tree canopy | 13.5249583 | | Housing habitability Low-inc homeowner severe housing cost burden Low-inc renter S5.74233286 Health Outcomes Low-inc renter severe housing cost burden S5.74233286 Health Outcomes Low-inc renter severe housing cost burden S5.74233286 Health Outcomes S6.10342615 Arthritis S6.8 Asthma ER Admissions S6.8 49.5 | Housing | | | Low-inc homeowner severe housing cost burden55.43436417Low-inc renter severe housing cost burden80.94443732Uncrowded housing55.74233286Health Outcomes-Insured adults58.10342615Arthritis86.8Asthma ER Admissions49.5 | Homeownership | 90.85076351 | | Low-inc renter severe housing cost burden 80.94443732 Uncrowded housing 55.74233286 Health Outcomes — Insured adults 58.10342615 Arthritis 86.8 Asthma ER Admissions 49.5 | Housing habitability | 84.89670217 | | Uncrowded housing55.74233286Health Outcomes—Insured adults58.10342615Arthritis86.8Asthma ER Admissions49.5 | Low-inc homeowner severe housing cost burden | 55.43436417 | | Health Outcomes — — — — — — — — — — — — — — — — — — — | Low-inc renter severe housing cost burden | 80.94443732 | | Insured adults
58.10342615 Arthritis 86.8 Asthma ER Admissions 49.5 | Uncrowded housing | 55.74233286 | | Arthritis 86.8 Asthma ER Admissions 49.5 | Health Outcomes | _ | | Asthma ER Admissions 49.5 | Insured adults | 58.10342615 | | | Arthritis | 86.8 | | High Blood Pressure 83.5 | Asthma ER Admissions | 49.5 | | | High Blood Pressure | 83.5 | | Cancer (excluding skin) | 77.2 | |---------------------------------------|------| | Asthma | 61.7 | | Coronary Heart Disease | 91.8 | | Chronic Obstructive Pulmonary Disease | 86.1 | | Diagnosed Diabetes | 72.3 | | Life Expectancy at Birth | 29.4 | | Cognitively Disabled | 56.3 | | Physically Disabled | 77.4 | | Heart Attack ER Admissions | 27.7 | | Mental Health Not Good | 61.1 | | Chronic Kidney Disease | 90.3 | | Obesity | 60.5 | | Pedestrian Injuries | 19.6 | | Physical Health Not Good | 71.4 | | Stroke | 88.3 | | Health Risk Behaviors | _ | | Binge Drinking | 30.9 | | Current Smoker | 56.8 | | No Leisure Time for Physical Activity | 61.9 | | Climate Change Exposures | _ | | Wildfire Risk | 12.6 | | SLR Inundation Area | 0.0 | | Children | 11.7 | | Elderly | 83.6 | | English Speaking | 54.8 | | Foreign-born | 60.5 | | Outdoor Workers | 41.9 | | | | | Climate Change Adaptive Capacity | | |----------------------------------|------| | Impervious Surface Cover | 68.7 | | Traffic Density | 51.4 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 49.6 | | Other Decision Support | _ | | 2016 Voting | 53.9 | #### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | | | | | | | | |---|---------------------------------|--|--|--|--|--|--|--| | CalEnviroScreen 4.0 Score for Project Location (a) | 80.0 | | | | | | | | | Healthy Places Index Score for Project Location (b) | 59.0 | | | | | | | | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | | | | | | | | Project Located in a Low-Income Community (Assembly Bill 1550) | No | | | | | | | | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | | | | | | | | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. ## 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. # 8. User Changes to Default Data b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Screen | Justification | |--------------------------------------|--| | Land Use | Site is ~85,440 sf (~1.96 acres) with a parking lot with 28 passenger vehicles and 57 truck dock spaces. Existing building is to remain with no new buildings being constructed. Existing building to remain is ~1,220 sf and landscaping is ~21,650 sf (~0.497 ac); therefore, paved area of parking lot modeled as ~62,570 sf or ~1.435 acres. E | | Construction: Construction Phases | Construction anticipated to begin early February 2025 and be completed by June 2025. Existing building to remain, no new buildings are being constructed, therefore, no building construction phase. Demolition of existing paving only (covering ~1.932 acres or ~84,158 sf). Removal of existing paving estimated at ~84,158 sf to be removed = 84,158sfx0.3in=25,247.4c ftx45lbs/cf2=1,136,133lbs= ~1,136 tons of debris to be removed during demolition. As the project is mainly that of the construction of a paved parking area, the CalEEMod default paving phase timeline has been increased. Site is anticipated to balance. | | Construction: Architectural Coatings | SCAQMD Rule 1113 limits architectural coatings to 50 g/L VOC for buildings and 100 g/L VOC for parking lots. | | Operations: Vehicle Data | _ | | Operations: Fleet Mix | _ | # 19721 2160 Stonehurst Drive Truck Yard - OPERATIONAL ANALYSIS ONLY Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.3. Area Emissions by Source - 4.3.1. Unmitigated - 4.4. Water Emissions by Land Use - 4.4.1. Unmitigated - 4.5. Waste Emissions by Land Use - 4.5.1. Unmitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.9. User Defined Emissions By Equipment Type - 4.9.1. Unmitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information ## 1.1. Basic Project Information | Data Field | Value | |-----------------------------|--| | Project Name | 19721 2160 Stonehurst Drive Truck Yard - OPERATIONAL ANALYSIS ONLY | | Operational Year | 2025 | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.80 | | Precipitation (days) | 6.40 | | Location | 2160 W Stonehurst Dr, Rialto, CA 92377, USA | | County | San Bernardino-South Coast | | City | Rialto | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5315 | | EDFZ | 10 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | | App Version | 2022.1.1.24 | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq ft) | Special Landscape
Area (sq ft) | Population | Description | |------------------|------|-------|-------------|-----------------------|------------------------|-----------------------------------|------------|-------------| | Parking Lot | 85.0 | Space | 1.44 | 0.00 | 21,650 | _ | _ | _ | | General Light | 1.22 | 1000sqft | 0.03 | 1,220 | 0.00 | _ | _ | _ | |---------------|------|----------|------|-------|------|---|---|---| | Industry | | | | | | | | | ## 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected # 2. Emissions Summary #### 2.4. Operations Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Daily,
Summer
(Max) | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | | Unmit. | 0.77 | 0.53 | 2.48 | 7.57 | 0.03 | 0.04 | 1.79 | 1.82 | 0.03 | 0.46 | 0.49 | 1.36 | 3,269 | 3,270 | 0.38 | 0.32 | 9.04 | 3,383 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.74 | 0.50 | 2.61 | 6.27 | 0.03 | 0.04 | 1.79 | 1.82 | 0.03 | 0.46 | 0.49 | 1.36 | 3,160 | 3,161 | 0.38 | 0.32 | 0.54 | 3,266 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.75 | 0.50 | 2.63 | 6.52 | 0.03 | 0.04 | 1.78 | 1.81 | 0.03 | 0.46 | 0.49 | 1.36 | 3,176 | 3,178 | 0.38 | 0.32 | 4.08 | 3,287 | | Annual
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _
| _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.14 | 0.09 | 0.48 | 1.19 | 0.01 | 0.01 | 0.32 | 0.33 | 0.01 | 0.08 | 0.09 | 0.22 | 526 | 526 | 0.06 | 0.05 | 0.68 | 544 | ## 2.5. Operations Emissions by Sector, Unmitigated | Se | ctor | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----|------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---------|---------|---------|------|---------|---------|------|----------|---------|------|---------|------|-------|-------|---------|---------|------|-------| | Mobile | 0.73 | 0.48 | 2.46 | 7.50 | 0.03 | 0.03 | 1.79 | 1.82 | 0.03 | 0.46 | 0.49 | _ | 3,149 | 3,149 | 0.24 | 0.32 | 8.72 | 3,258 | | Area | 0.05 | 0.05 | < 0.005 | 0.05 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 0.22 | 0.22 | < 0.005 | < 0.005 | _ | 0.22 | | Energy | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 114 | 114 | 0.01 | < 0.005 | _ | 114 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.54 | 5.49 | 6.03 | 0.06 | < 0.005 | _ | 7.83 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.82 | 0.00 | 0.82 | 0.08 | 0.00 | _ | 2.85 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.32 | 0.32 | | Total | 0.77 | 0.53 | 2.48 | 7.57 | 0.03 | 0.04 | 1.79 | 1.82 | 0.03 | 0.46 | 0.49 | 1.36 | 3,269 | 3,270 | 0.38 | 0.32 | 9.04 | 3,383 | | Daily,
Winter
(Max) | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 0.70 | 0.46 | 2.59 | 6.26 | 0.03 | 0.03 | 1.79 | 1.82 | 0.03 | 0.46 | 0.49 | _ | 3,041 | 3,041 | 0.24 | 0.32 | 0.23 | 3,142 | | Area | 0.04 | 0.04 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Energy | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 114 | 114 | 0.01 | < 0.005 | _ | 114 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.54 | 5.49 | 6.03 | 0.06 | < 0.005 | _ | 7.83 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.82 | 0.00 | 0.82 | 0.08 | 0.00 | _ | 2.85 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.32 | 0.32 | | Total | 0.74 | 0.50 | 2.61 | 6.27 | 0.03 | 0.04 | 1.79 | 1.82 | 0.03 | 0.46 | 0.49 | 1.36 | 3,160 | 3,161 | 0.38 | 0.32 | 0.54 | 3,266 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 0.70 | 0.45 | 2.62 | 6.48 | 0.03 | 0.03 | 1.78 | 1.81 | 0.03 | 0.46 | 0.49 | _ | 3,057 | 3,057 | 0.24 | 0.32 | 3.77 | 3,162 | | Area | 0.05 | 0.04 | < 0.005 | 0.04 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 0.15 | 0.15 | < 0.005 | < 0.005 | _ | 0.15 | | Energy | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 114 | 114 | 0.01 | < 0.005 | _ | 114 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.54 | 5.49 | 6.03 | 0.06 | < 0.005 | _ | 7.83 | | Waste | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | 0.82 | 0.00 | 0.82 | 0.08 | 0.00 | _ | 2.85 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.32 | 0.32 | | Total | 0.75 | 0.50 | 2.63 | 6.52 | 0.03 | 0.04 | 1.78 | 1.81 | 0.03 | 0.46 | 0.49 | 1.36 | 3,176 | 3,178 | 0.38 | 0.32 | 4.08 | 3,287 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------|---------|---------|---------|---------|---------|---------|------|---------|---------|------|---------|------|------|------|---------|---------|------|------| | Mobile | 0.13 | 0.08 | 0.48 | 1.18 | 0.01 | 0.01 | 0.32 | 0.33 | 0.01 | 0.08 | 0.09 | _ | 506 | 506 | 0.04 | 0.05 | 0.62 | 523 | | Area | 0.01 | 0.01 | < 0.005 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 0.02 | 0.02 | < 0.005 | < 0.005 | _ | 0.02 | | Energy | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 18.8 | 18.8 | < 0.005 | < 0.005 | _ | 18.9 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.09 | 0.91 | 1.00 | 0.01 | < 0.005 | _ | 1.30 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.13 | 0.00 | 0.13 | 0.01 | 0.00 | _ | 0.47 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.05 | 0.05 | | Total | 0.14 | 0.09 | 0.48 | 1.19 | 0.01 | 0.01 | 0.32 | 0.33 | 0.01 | 0.08 | 0.09 | 0.22 | 526 | 526 | 0.06 | 0.05 | 0.68 | 544 | # 4. Operations Emissions Details ## 4.1. Mobile Emissions by Land Use #### 4.1.1. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |------------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | General
Light
Industry | 0.73 | 0.48 | 2.46 | 7.50 | 0.03 | 0.03 | 1.79 | 1.82 | 0.03 | 0.46 | 0.49 | _ | 3,149 | 3,149 | 0.24 | 0.32 | 8.72 | 3,258 | | Total | 0.73 | 0.48 | 2.46 | 7.50 | 0.03 | 0.03 | 1.79 | 1.82 | 0.03 | 0.46 | 0.49 | _ | 3,149 | 3,149 | 0.24 | 0.32 | 8.72 | 3,258 | | Daily,
Winter
(Max) | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | _ | _ | _ | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | General
Light
Industry | 0.70 | 0.46 | 2.59 | 6.26 | 0.03 | 0.03 | 1.79 | 1.82 | 0.03 | 0.46 | 0.49 | _ | 3,041 | 3,041 | 0.24 | 0.32 | 0.23 | 3,142 | |------------------------------|------|------|------|------|------|------|------|------|------|------|------|---|-------|-------|------|------|------|-------| | Total | 0.70 | 0.46 | 2.59 | 6.26 | 0.03 | 0.03 | 1.79 | 1.82 | 0.03 | 0.46 | 0.49 | _ | 3,041 | 3,041 | 0.24 | 0.32 | 0.23 | 3,142 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | General
Light
Industry | 0.13 | 0.08 | 0.48 | 1.18 | 0.01 | 0.01 | 0.32 | 0.33 | 0.01 | 0.08 | 0.09 | _ | 506 | 506 | 0.04 | 0.05 | 0.62 | 523 | | Total | 0.13 | 0.08 | 0.48 | 1.18 | 0.01 | 0.01 | 0.32 | 0.33 | 0.01 | 0.08 | 0.09 | _ | 506 | 506 | 0.04 | 0.05 | 0.62 | 523 | ## 4.2. Energy ## 4.2.1. Electricity Emissions By Land Use - Unmitigated | Land
Use | | | | | | | | PM10T | | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------------------------------|---|---|---|---|---|---|---|-------|---|--------|---|------|-------|------|---------|---------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 79.8 | 79.8 | < 0.005 | < 0.005 | _ | 80.1 | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 17.0 | 17.0 | < 0.005 | < 0.005 | _ | 17.0 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 96.8 | 96.8 | 0.01 | < 0.005 | _ | 97.1 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 79.8 | 79.8 | < 0.005 | < 0.005 | _ | 80.1 | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 17.0 | 17.0 | < 0.005 | < 0.005 | _ | 17.0 | |------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|------|------|---------|---------|---|------| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 96.8 | 96.8 | 0.01 | < 0.005 | _ | 97.1 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | _ | | _ | _ | _ | _ | _ | _ | | _ | _ | _ | 13.2 | 13.2 | < 0.005 | < 0.005 | _ | 13.3 | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2.81 | 2.81 | < 0.005 | < 0.005 | _ | 2.82 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 16.0 | 16.0 | < 0.005 | < 0.005 | _ | 16.1 | ## 4.2.3. Natural Gas Emissions By Land Use - Unmitigated | | | | | <i>J</i> , | | | | | J. | | | | | | | | | | |------------------------------|---------|---------|------|------------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|---|------| | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | General
Light
Industry | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 16.8 | 16.8 | < 0.005 | < 0.005 | _ | 16.8 | | Total | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 16.8 | 16.8 | < 0.005 | < 0.005 | _ | 16.8 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | General
Light
Industry | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 16.8 | 16.8 | < 0.005 | < 0.005 | _ | 16.8 | | Total | < 0.005 | < 0.005 | 0.01
| 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 16.8 | 16.8 | < 0.005 | < 0.005 | _ | 16.8 | |------------------------------|---------|---------|---------|---------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | General
Light
Industry | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 2.78 | 2.78 | < 0.005 | < 0.005 | _ | 2.78 | | Total | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 2.78 | 2.78 | < 0.005 | < 0.005 | _ | 2.78 | ## 4.3. Area Emissions by Source # 4.3.1. Unmitigated | Source | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |--------------------------------|------|------|---------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | 0.03 | 0.03 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 0.01 | 0.01 | < 0.005 | 0.05 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 0.22 | 0.22 | < 0.005 | < 0.005 | _ | 0.22 | | Total | 0.05 | 0.05 | < 0.005 | 0.05 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 0.22 | 0.22 | < 0.005 | < 0.005 | _ | 0.22 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | 0.03 | 0.03 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------------------------|---------|---------|---------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Architect ural Coatings | 0.01 | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | 0.04 | 0.04 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | 0.01 | 0.01 | _ | - | _ | - | _ | _ | - | _ | _ | - | _ | _ | _ | _ | - | - | | Architect
ural
Coatings | < 0.005 | < 0.005 | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | < 0.005 | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 0.02 | 0.02 | < 0.005 | < 0.005 | - | 0.02 | | Total | 0.01 | 0.01 | < 0.005 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 0.02 | 0.02 | < 0.005 | < 0.005 | _ | 0.02 | ## 4.4. Water Emissions by Land Use ## 4.4.1. Unmitigated | Land
Use | TOG | ROG | | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|---------|---------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | _ | _ | _ | _ | _ | _ | | _ | | | _ | 0.00 | 2.69 | 2.69 | < 0.005 | < 0.005 | | 2.70 | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.54 | 2.80 | 3.34 | 0.06 | < 0.005 | _ | 5.13 | | Total | _ | _ | _ | - | _ | <u> </u> | _ | _ | _ | _ | _ | 0.54 | 5.49 | 6.03 | 0.06 | < 0.005 | _ | 7.83 | |------------------------------|---|----------|---|---|---|----------|---|---|---|---|---|------|------|------|---------|---------|---|------| | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 2.69 | 2.69 | < 0.005 | < 0.005 | _ | 2.70 | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.54 | 2.80 | 3.34 | 0.06 | < 0.005 | _ | 5.13 | | Total | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.54 | 5.49 | 6.03 | 0.06 | < 0.005 | _ | 7.83 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.45 | 0.45 | < 0.005 | < 0.005 | _ | 0.45 | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.09 | 0.46 | 0.55 | 0.01 | < 0.005 | _ | 0.85 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.09 | 0.91 | 1.00 | 0.01 | < 0.005 | _ | 1.30 | ## 4.5. Waste Emissions by Land Use ## 4.5.1. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.82 | 0.00 | 0.82 | 0.08 | 0.00 | _ | 2.85 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | 0.82 | 0.00 | 0.82 | 0.08 | 0.00 | _ | 2.85 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |------------------------------|---|---|----------|---|---|---|----------|---|---|---|---|------|------|------|------|------|---|------| | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.82 | 0.00 | 0.82 | 0.08 | 0.00 | _ | 2.85 | | Total | _ | _ | _ | _ | _ | _ | <u> </u> | | _ | _ | _ | 0.82 | 0.00 | 0.82 | 0.08 | 0.00 | _ | 2.85 | | Annual | _ | _ | <u> </u> | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.13 | 0.00 | 0.13 | 0.01 | 0.00 | _ | 0.47 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.13 | 0.00 | 0.13 | 0.01 | 0.00 | _ | 0.47 | ## 4.6. Refrigerant Emissions by Land Use #### 4.6.1. Unmitigated | Land
Use | | ROG | | | SO2 | | | | | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------------------------------|---|-----|---|---|-----|---|---|---|---|--------|---|------|-------|------|-----|-----|------|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.32 | 0.32 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.32 | 0.32 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.32 | 0.32 | |------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------|------| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.32 | 0.32 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | General
Light
Industry | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.05 | 0.05 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.05 | 0.05 | ## 4.7. Offroad Emissions By Equipment Type #### 4.7.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.8. Stationary Emissions By Equipment Type #### 4.8.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | | | <i>J</i> , <i>J</i> | | | \ | · · · · · · | _ | | · · · · · · | | | | | | | | |---------------------------|-----|-----|-----|---------------------|-----|-------|-------|-------------|----------|--------|-------------|------|-------|------|-----|-----|---|------| | Equipme
nt
Type | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _
 _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.9. User Defined Emissions By Equipment Type #### 4.9.1. Unmitigated | | | (110) 0101 | , | y, (O11/y) | | | | e, alony item | J. J. | 17 / 1 1 2 1 | , | | | | | | | | |---------------------------|-----|------------|-----|------------|-----|---------|-------|---------------|--------|--------------|--------|------|-------|------|-----|-----|---|------| | Equipme
nt
Type | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.10. Soil Carbon Accumulation By Vegetation Type #### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Vegetatio
n | | ROG | | СО | SO2 | PM10E | | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |---------------------------|---|-----|---|----|-----|----------|---|-------|----------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | <u> </u> | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated | Land
Use | TOG | ROG | | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | | | | | | | | | | daily, IV | | | 2000 | NID O O O | 000= | au. | a | | 200 | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|-----------|--------|--------|------|-----------|------|-----|-----|---|------| | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Subtotal | _ | _ | _ | _ | _ | | _ | _ | | _ | _ | _ | | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data ## 5.9. Operational Mobile Sources ### 5.9.1. Unmitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |---------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------| | Parking Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | General Light
Industry | 131 | 131 | 131 | 47,816 | 2,393 | 2,393 | 2,393 | 873,531 | ## 5.10. Operational Area Sources 5.10.1. Hearths 5.10.1.1. Unmitigated ### 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|--|--|-----------------------------| | 0 | 0.00 | 1,830 | 610 | 3,751 | #### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | ## 5.11. Operational Energy Consumption #### 5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | ., , , , , , , , , , , , , , , , , , , | | | | | | |--|----------------------|-----|--------|--------|-----------------------| | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | | Parking Lot | 54,758 | 532 | 0.0330 | 0.0040 | 0.00 | | General Light Industry | 11,636 | 532 | 0.0330 | 0.0040 | 52,321 | ## 5.12. Operational Water and Wastewater Consumption #### 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |------------------------|-------------------------|--------------------------| | Parking Lot | 0.00 | 347,680 | | General Light Industry | 282,125 | 0.00 | ## 5.13. Operational Waste Generation #### 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |------------------------|------------------|-------------------------| | Parking Lot | 0.00 | _ | | General Light Industry | 1.51 | _ | ## 5.14. Operational Refrigeration and Air Conditioning Equipment #### 5.14.1. Unmitigated | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | |------------------------|-------------------------------------|-------------|-------|---------------|----------------------|-------------------|----------------| | General Light Industry | Other commercial A/C and heat pumps | R-410A | 2,088 | 0.30 | 4.00 | 4.00 | 18.0 | ## 5.15. Operational Off-Road Equipment #### 5.15.1. Unmitigated | Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower | Load Factor | |--|-------------| |--|-------------| ## 5.16. Stationary Sources #### 5.16.1. Emergency Generators and Fire Pumps | Equipment type Fuel type Number per Day Hours per Day Hours per Teal Horsepower Load Factor | Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor | |---|----------------|-----------|----------------|---------------|----------------|------------|-------------| |---|----------------|-----------|----------------|---------------|----------------|------------|-------------| #### 5.16.2. Process Boilers | Equipment Type Fuel Type Number Boiler Rating (MMBtu/hr) Daily Heat Input (MMBtu/day) Annual Heat Input (MM | Equipment Type | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) | |---
----------------|-----------|--------|--------------------------|------------------------------|------------------------------| |---|----------------|-----------|--------|--------------------------|------------------------------|------------------------------| #### 5.17. User Defined Equipment Type Fuel Type - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres 5.18.1. Biomass Cover Type 5.18.1.1. Unmitigated Biomass Cover Type Initial Acres Final Acres 5.18.2. Sequestration 5.18.2.1. Unmitigated Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year) ## 6. Climate Risk Detailed Report #### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 27.6 | annual days of extreme heat | | Extreme Precipitation | 6.85 | annual days with precipitation above 20 mm | | Sea Level Rise | _ | meters of inundation depth | | Wildfire | 15.9 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. ## 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation N/A | N/A | N/A | N/A | | |-----------------------------|-----|-----|-----|--| |-----------------------------|-----|-----|-----|--| The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ## 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------------------|---------------------------------| | Exposure Indicators | _ | | AQ-Ozone | 98.7 | | AQ-PM | 76.3 | | AQ-DPM | 52.6 | | Drinking Water | 95.8 | | Lead Risk Housing | 10.9 | | Pesticides | 0.00 | | Toxic Releases | 62.6 | | Traffic | 61.3 | | Effect Indicators | _ | | CleanUp Sites | 88.3 | | Groundwater | 97.4 | | Haz Waste Facilities/Generators | 85.2 | | Impaired Water Bodies | 0.00 | | Solid Waste | 93.6 | | Sensitive Population | _ | |---------------------------------|------| | Asthma | 48.9 | | Cardio-vascular | 83.4 | | Low Birth Weights | 65.8 | | Socioeconomic Factor Indicators | | | Education | 48.8 | | Housing | 12.8 | | Linguistic | 40.4 | | Poverty | 36.8 | | Unemployment | 77.8 | ## 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | _ | | Above Poverty | 68.84383421 | | Employed | 51.71307584 | | Median HI | 83.8829719 | | Education | _ | | Bachelor's or higher | 52.44450148 | | High school enrollment | 21.68612858 | | Preschool enrollment | 34.36417298 | | Transportation | _ | | Auto Access | 89.83703323 | | Active commuting | 19.63300398 | | Social | _ | | 2-parent households | 67.67611959 | | Voting | 45.05325292 | |--|-------------| | Neighborhood | _ | | Alcohol availability | 57.141024 | | Park access | 29.05171308 | | Retail density | 28.8848967 | | Supermarket access | 25.09944822 | | Tree canopy | 13.5249583 | | Housing | _ | | Homeownership | 90.85076351 | | Housing habitability | 84.89670217 | | Low-inc homeowner severe housing cost burden | 55.43436417 | | Low-inc renter severe housing cost burden | 80.94443732 | | Uncrowded housing | 55.74233286 | | Health Outcomes | _ | | Insured adults | 58.10342615 | | Arthritis | 86.8 | | Asthma ER Admissions | 49.5 | | High Blood Pressure | 83.5 | | Cancer (excluding skin) | 77.2 | | Asthma | 61.7 | | Coronary Heart Disease | 91.8 | | Chronic Obstructive Pulmonary Disease | 86.1 | | Diagnosed Diabetes | 72.3 | | Life Expectancy at Birth | 29.4 | | Cognitively Disabled | 56.3 | | Physically Disabled | 77.4 | | Heart Attack ER Admissions | 27.7 | | Mental Health Not Good | 61.1 | |---------------------------------------|------| | Chronic Kidney Disease | 90.3 | | Obesity | 60.5 | | Pedestrian Injuries | 19.6 | | Physical Health Not Good | 71.4 | | Stroke | 88.3 | | Health Risk Behaviors | _ | | Binge Drinking | 30.9 | | Current Smoker | 56.8 | | No Leisure Time for Physical Activity | 61.9 | | Climate Change Exposures | _ | | Wildfire Risk | 12.6 | | SLR Inundation Area | 0.0 | | Children | 11.7 | | Elderly | 83.6 | | English Speaking | 54.8 | | Foreign-born | 60.5 | | Outdoor Workers | 41.9 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 68.7 | | Traffic Density | 51.4 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 49.6 | | Other Decision Support | _ | | 2016 Voting | 53.9 | | | | #### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 80.0 | | Healthy Places Index Score for Project
Location (b) | 59.0 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | No | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. ### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. # 8. User Changes to Default Data | Screen | Justification | |--------------------------|--| | Land Use | Site is ~85,440 sf (~1.96 acres) with a parking lot with 28 passenger vehicles and 57 truck dock spaces. Existing building is to remain with no new buildings being constructed. Existing building to remain is ~1,220 sf and landscaping is ~21,650 sf (~0.497 ac); therefore, paved area of parking lot modeled as ~62,570 sf or ~1.435 acres. Existing building has been included in operational modeling and modeled as General Light Industry. | | Operations: Vehicle Data | Per Trip Generation Methodology 1 from the Trip Generation Memo, it was found that the proposed project would create approximately 131 vehicle trips per day. Therefore, the calculated trip generation for modeling purposes, is 131 spaces/1.220 TSF = 107.38 trips per TSF per day. This trip generation rate has been utilized in the modeling. The percentages were changed to 78.6% autos (H-W) and 21.4% trucks (W-O) to match the overall vehicle percentages given in the Trip Generation Memo. | b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. ## 19721 2160 Stonehurst Drive Truck Yard - OPERATIONAL ANALYSIS ONLY Detailed Report, 6/4/2024 | Operations: Fleet Mix | Revised per the Trip Generation Methodology 1 vehicle mix provided in the Trip Generation Memo of | |-----------------------|---| | | 78.6% Autos, 0% 2-Axle Trucks, 0% 3-Axle Trucks and 21.4% 4+ Axle Trucks. | **GANDDINI GROUP INC.** 714.795.3100 | ganddini.com